scholarly journals Analysis of flood peak scaling in mesoscale non-nested basin

2019 ◽  
Vol 20 (2) ◽  
pp. 416-427 ◽  
Author(s):  
Jianzhu Li ◽  
Keke Zhou ◽  
Ting Zhang ◽  
Qiushuang Ma ◽  
Ping Feng

Abstract The study of flood scaling is an important means to solve the problem of flood prediction in ungauged and poorly gauged basins. With the impact of climate change and human activities, the mechanism and process of floods are constantly changing. However, in many areas, there are only simple scaling results that can be used to guide daily work. Taking the Daqinghe River basin as an example, a fixed flood scaling exponent determined in 1974 (before the change point of 1979) is still used all over the basin, which is apparently no longer appropriate. Therefore, in this paper, we aim to explore: (1) the scale relationship between the peak flows and the basin area under changing environments; (2) the validation of the scale invariance theory; (3) the physical relationship between the event-based scaling theory and the annual flood quantile-based scaling theory in the mesoscale non-nested and partly nested basins; and (4) the modification of the existing uniform flood scaling exponent in the study area. To achieve these objectives, eight simultaneous observed flood events in seven non-nested and partly nested mesoscale sub-basins of the Daqinghe River basin were selected to analyze the flood scaling theory. The results showed that there was a scaling relationship between the flood peaks and watershed area for the flood events, and the scale invariance theory was also supported herein. To analyze the effect of the environmental conditions on flood scaling in the Daqinghe River basin, the flood events were reconstructed after the change point (the year 1979). It was found that the flood scaling exponents of the reconstructed flood events are larger than those of the observed events after the change point. The flood scaling exponent changed with flood events, varying from 0.65 to 1.26 when considering the basin area as the independent variable, and decreasing with a minimum of 0.36 when taking the rainfall characteristics into consideration. It was also found that the mean of the event-based scaling exponents is larger than the annual flood quantile-based scaling exponents.

2019 ◽  
pp. 33-60
Author(s):  
Ranka Eric ◽  
Andrijana Todorovic ◽  
Jasna Plavsic ◽  
Vesna Djukic

Hydrologic models are important for effective water resources management at a basin level. This paper describes an application of the HEC-HMS hydrologic model for simulations of flood hydrographs in the Lukovska River basin. Five flood events observed at the Mercez stream gauge were available for modelling purposes. These events are from two distinct periods and two seasons with different prevailing runoff generation mechanisms. Hence the events are assigned to either ?present? or ?past?, and ?spring? or ?summer? group. The optimal parameter sets of each group are obtained by averaging the optimal parameters for individual events within the group. To assess model transferability, its applicability for simulation of flood events which are not considered in the model calibration, a cross-validation is performed. The results indicate that model parameters vary across the events, and that parameter transfer generally leads to considerable errors in hydrograph peaks and volumes, with the exception of simulation of summer events with ?spring? parameters. Based on these results, recommendations for event-based modeling are given.


Think India ◽  
2019 ◽  
Vol 22 (2) ◽  
pp. 296-304
Author(s):  
Biplab Tripathy ◽  
Tanmoy Mondal

India is a subcontinent, there huge no of people lived in river basin area. In India there more or less 80% of people directly or indirectly depend on River. Ganga, Brahamputra in North and North East and Mahanadi, Govabori, Krishna, Kaveri, Narmoda, Tapti, Mahi in South are the major river basin in India. There each year due to flood and high tide lots of people are suffered in river basin region in India. These problems destroy the socio economic peace and hope of the people in river basin. There peoples are continuously suffered by lots of difficulties in sort or in long term basis. Few basin regions are always in high alert at the time of monsoon seasons. Sometime due to over migration from basin area, it becomes empty and creates an ultimate loss of resources in India and causes a dis-balance situation in this area.


2021 ◽  
Author(s):  
Diver E. Marín ◽  
Juan F. Salazar ◽  
José A. Posada-Marín

<p>Some of the main problems in hydrological sciences are related to how and why river flows change as a result of environmental change, and what are the corresponding implications for society. This has been described as the Panta Rhei context, which refers to the challenge of understanding and quantifying hydrological dynamics in a changing environment, i.e. under the influence of non-stationary effects. The river flow regime in a basin is the result of a complex aggregation process that has been studied by the scaling theory, which allows river basins to be classified as regulated or unregulated and to identify a critical threshold between these states. Regulation is defined here as the basin’s capacity to either dampen high flows or to enhance low flows. This capacity depends on how basins store and release water through time, which in turn depends on many processes that are highly dynamic and sensitive to environmental change. Here we focus on the Magdalena river basin in northwestern South America, which is the main basin for water and energy security in Colombia, and at the same time, it has been identified as one of the most vulnerable regions to be affected by climate change. Building upon some of our previous studies, here we use data analysis to study the evolution of regulation in the Magdalena basin for 1992-2015 based on the scaling theory for extreme flows. In contrast to most previous studies, here we focus on the scaling properties of events rather than on long term averages. We discuss possible relations between changes in the scaling properties and environmental factors such as climate variability, climate change, and land use/land cover change, as well as the potential implications for water security in the country. Our results show that, during the last few decades, the Magdalena river basin has maintained its capacity to regulate low flows (i.e. amplification) whereas it has been losing its capacity to regulate high flows (i.e. dampening), which could be associated with the occurrence of the extremes phases of  El Niño Southern Oscillation (ENSO) and anthropogenic effects, mainly deforestation. These results provide foundations for using the scaling laws as empirical tools for understanding temporal changes of hydrological regulation and simultaneously generate useful scientific evidence that allows stakeholders to take decisions related to water management in the Magdalena river basin in the context of environmental change.</p>


2021 ◽  
Author(s):  
Haoyu Jin ◽  
Xiaohong Chen ◽  
Ruida Zhong

Abstract Runoff prediction has an important guiding role in the planning and management of regional water resources, flood prevention and drought resistance, and can effectively predict the risk of changes in regional water resources. This study used 12 runoff prediction methods to predict the runoff of four hydrological stations in the Hanjiang River Basin (HRB). Through the MCMC method, the HRB runoff probability conversion model from low to high (high to low) is constructed. The study found that the runoff of the HRB had a decreasing trend. In the mid-1980s, the runoff had a significant decreasing trend. The smoother the runoff changes, the easier it is to make accurate prediction. On the whole, the QS-MFM, MFM, MA-MFM, CES and DNN methods have strong generalization ability and can more accurately predict the runoff of the HRB. The Logistic model can accurately simulate the change of runoff status in the HRB. Among them, the HLT station has the fastest conversion rate of drought and flood, and the flow that generates floods is 6 times that of drought. The smaller the basin area, the larger the gap between drought and flood discharge. Overall, this research provides important technical support for the prediction of change in water resources and the transition probability from drought to flood in the HRB.


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 813 ◽  
Author(s):  
José Amigó ◽  
Sámuel Balogh ◽  
Sergio Hernández

Entropy appears in many contexts (thermodynamics, statistical mechanics, information theory, measure-preserving dynamical systems, topological dynamics, etc.) as a measure of different properties (energy that cannot produce work, disorder, uncertainty, randomness, complexity, etc.). In this review, we focus on the so-called generalized entropies, which from a mathematical point of view are nonnegative functions defined on probability distributions that satisfy the first three Shannon–Khinchin axioms: continuity, maximality and expansibility. While these three axioms are expected to be satisfied by all macroscopic physical systems, the fourth axiom (separability or strong additivity) is in general violated by non-ergodic systems with long range forces, this having been the main reason for exploring weaker axiomatic settings. Currently, non-additive generalized entropies are being used also to study new phenomena in complex dynamics (multifractality), quantum systems (entanglement), soft sciences, and more. Besides going through the axiomatic framework, we review the characterization of generalized entropies via two scaling exponents introduced by Hanel and Thurner. In turn, the first of these exponents is related to the diffusion scaling exponent of diffusion processes, as we also discuss. Applications are addressed as the description of the main generalized entropies advances.


2018 ◽  
Vol 22 (9) ◽  
pp. 5001-5019 ◽  
Author(s):  
Dan Yu ◽  
Ping Xie ◽  
Xiaohua Dong ◽  
Xiaonong Hu ◽  
Ji Liu ◽  
...  

Abstract. Flooding represents one of the most severe natural disasters threatening the development of human society. A model that is capable of predicting the hydrological responses in watershed with management practices during flood period would be a crucial tool for pre-assessment of flood reduction measures. The Soil and Water Assessment Tool (SWAT) is a semi-distributed hydrological model that is well capable of runoff and water quality modeling under changed scenarios. The original SWAT model is a long-term yield model. However, a daily simulation time step and a continuous time marching limit the application of the SWAT model for detailed, event-based flood simulation. In addition, SWAT uses a basin level parameter that is fixed for the whole catchment to parameterize the unit hydrograph (UH), thereby ignoring the spatial heterogeneity among the sub-basins when adjusting the shape of the UHs. This paper developed a method to perform event-based flood simulation on a sub-daily timescale based on SWAT2005 and simultaneously improved the UH method used in the original SWAT model. First, model programs for surface runoff and water routing were modified to a sub-daily timescale. Subsequently, the entire loop structure was broken into discrete flood events in order to obtain a SWAT-EVENT model in which antecedent soil moisture and antecedent reach storage could be obtained from daily simulations of the original SWAT model. Finally, the original lumped UH parameter was refined into a set of distributed ones to reflect the spatial variability of the studied area. The modified SWAT-EVENT model was used in the Wangjiaba catchment located in the upper reaches of the Huaihe River in China. Daily calibration and validation procedures were first performed for the SWAT model with long-term flow data from 1990 to 2010, after which sub-daily (Δt=2 h) calibration and validation in the SWAT-EVENT model were conducted with 24 flood events originating primarily during the flood seasons within the same time span. Daily simulation results demonstrated that the SWAT model could yield very good performances in reproducing streamflow for both whole year and flood period. Event-based flood simulation results simulated by the sub-daily SWAT-EVENT model indicated reliable performances, with ENS values varying from 0.67 to 0.95. The SWAT-EVENT model, compared to the SWAT model, particularly improved the simulation accuracies of the flood peaks. Furthermore, the SWAT-EVENT model results of the two UH parameterization methods indicated that the use of the distributed parameters resulted in a more reasonable UH characterization and better model fit compared to the lumped UH parameter.


Sign in / Sign up

Export Citation Format

Share Document