scholarly journals Effective removal of fly ash by Penicillium chrysogenum and determination of direct fly ash toxicity with Daphnia magna

Author(s):  
Burcu Ertit Taştan

Abstract This study demonstrates the removal of fly ash with Penicillium chrysogenum, a newly isolated species of fungus, and acute toxicity assessment with Daphnia magna. In the study, two different removal mechanisms were compared, both bio-removal and bio-sorption. Six different ash and three different biomass concentrations were used simultaneously. Although other fungal species in the literature failed at such a high concentration of fly ash, P. chrysogenum was able to tolerate it even at 10% concentration. The highest bio-removal yield was recorded as 100% at 0.5% fly ash concentration. Maximum bio-sorption yield was 95.27% after 24th hour. The evaluation results of fly ash bio-toxicity by D. magna showed that the no observed effect level (NOEL) was 0.2 mg/L and the low observed effect level (LOEL) was 0.5 mg/L. The element analysis, determined by ED-XRF, clarified that Ca, Si, Fe and S were the common elements in this ash. This is the first study in the literature where fly ash removal was carried out using P. chrysogenum for both bio-removal and bio-sorption and needs to be developed in the future.

2021 ◽  
Author(s):  
Luigimaria Borruso ◽  
Alice Checcucci ◽  
Valeria Torti ◽  
Federico Correa ◽  
Camillo Sandri ◽  
...  

AbstractHere, we investigated the possible linkages among geophagy, soil characteristics, and gut mycobiome of indri (Indri indri), an endangered lemur species able to survive only in wild conditions. The soil eaten by indri resulted in enriched secondary oxide-hydroxides and clays, together with a high concentration of specific essential micronutrients. This could partially explain the role of the soil in detoxification and as a nutrient supply. Besides, we found that soil subject to geophagy and indris’ faeces shared about 8.9% of the fungal OTUs. Also, several genera (e.g. Fusarium, Aspergillus and Penicillium) commonly associated with soil and plant material were found in both geophagic soil and indri samples. On the contrary, some taxa with pathogenic potentials, such as Cryptococcus, were only found in indri samples. Further, many saprotrophs and plant-associated fungal taxa were detected in the indri faeces. These fungal species may be involved in the digestion processes of leaves and could have a beneficial role in their health. In conclusion, we found an intimate connection between gut mycobiome and soil, highlighting, once again, the potential consequent impacts on the wider habitat.


1999 ◽  
Vol 09 (03n04) ◽  
pp. 417-422 ◽  
Author(s):  
V. VIJAYAN ◽  
S. N. BEHERA

Fly ash is a major component of solid material generated by the coal-fired thermal power plants. In India the total amount of fly ash produced per annum is around 100 million tonnes. Fly ash has a great potential for utilization in making industrial products such as cement, bricks as well as building materials, besides being used as a soil conditioner and a provider of micro nutrients in agriculture. However, given the large amount of fly ash that accumulate at thermal power plants, their possible reuse and dispersion and mobilization into the environment of the various elements depend on climate, soils, indigenous vegetation and agriculture practices. Fly ash use in agriculture improved various physico-chemical properties of soil, particularly the water holding capacity, porosity and available plant nutrients. However it is generally apprehended that the application of large quantity of fly ash in fields may affect the plant growth and soil texture. Hence there is a need to characterize trace elements of fly ash. The results of trace element analysis of fly ash and pond ash samples collected from major thermal power plants of India by Particle Induced X-ray Emission (PIXE) have been discussed.


Chemosphere ◽  
2017 ◽  
Vol 168 ◽  
pp. 384-389 ◽  
Author(s):  
Satoshi Asaoka ◽  
Hideo Okamura ◽  
Kyunghoi Kim ◽  
Yuzuru Hatanaka ◽  
Kenji Nakamoto ◽  
...  

1995 ◽  
Vol 14 (11) ◽  
pp. 889-894 ◽  
Author(s):  
N. Pant ◽  
AK Prasad ◽  
SC Srivastava ◽  
R. Shankar ◽  
SP Srivastava

1 Carbofuran was administered orally to adult male rats at dose levels of 0.1, 0.2, 0.4 or 0.8 mg kg -1 body weight, 5 d wk-1 for 60 days. A dose dependent decrease was observed in body weight of rats treated with 0.2-0.8 mg carbofuran kg -1 body weight 2 A significant decrease in the weight of epididymides, seminal vesicles, ventral prostate and coagulating glands was observed at various test doses of carbofuran except at the lowest dose. 3 Decreased sperm motility, reduced epididymal sperm count along with increased morphological abnormali ties in head, neck and tail regions of spermatozoa were observed in rats exposed to 0.2, 0.4, or 0.8 mg carbo furan kg-1 body weight. 4 In addition, significant alterations were observed in the activities of marker testicular enzymes viz. sorbitol dehydrogenase (SDH), glucose-6-P-dehydrogenase (G6PDH) (decreased), lactate dehydrogenase (LDH) and γ-glutamyl transpeptidase (γ-GT) (increased) depending on dose. 5 Histologically, the results indicated the toxicity of carbo furan on testes depending on dose. The changes pre dominantly consisted of moderate oedema, congestion, damage to Sertoli cells and germ cells, along with the accumulation of cellular debris and presence of giant cells in the lumen of a few seminiferous tubules which showed disturbed spermatogenesis with the higher doses of carbofuran. 6 These observations determined a no effect level dose of 0.1 mg kg-1 body weight of carbofuran on the biochemi cal and morphological indices studied for male repro ductive toxicity assessment in the rat model. The results of the present study provide first hand information on the reproductive toxicity of carbofuran in male rats.


2014 ◽  
Vol 40 (3) ◽  
pp. 115-121 ◽  
Author(s):  
Anna Sierosławska ◽  
Anna Rymuszka ◽  
Tadeusz Skowroński

Abstract The aim of the study was to determine the toxicity of the extract obtained from the cyanobacterial cells derived from the waters of Zemborzycki dam reservoir with use of a battery of biotests. The taxonomic identification of the bloom-forming cyanobacteria revealed high abundance of Aphanizomenon flos-aquae and Dolichospermum spp. (Anabaena spp.) and in a lower degree of Microcystis aeruginosa and Planktothrix agardhii. In the extract obtained from concentrated cyanobacterial cells, hepatotoxin microcystin-LR at a concentration of 22.89 ± 3.74 μg/L and neurotoxin Antx-a at 13.02 ± 0.01 μg/L have been detected. Toxicity of the extract was evaluated with the following assays: Daphtoxkit F magna with the crustacean Daphnia magna, Thamnotoxkit F with the crustacean Thamnocephalus platyurus, Rotoxkit F with the rotifer Brachionus calyciflorus and Protoxkit F with ciliate Tetrahymena thermophila. The most sensitive organism among all studied was T. platyurus for which EC50 was estimated to be 1.2% of the initial extract concentration. On the basis of the highest obtained value of the toxicity unit (TU = 83) the studied sample was classified to the IV class, which is of high acute toxicity. Additionally, it was found that reactivity on cyanobacterial products differs greatly among organisms used in bioassays, which indicate the need for using a set of biotests.


2008 ◽  
Vol 24 (7) ◽  
pp. 491-500 ◽  
Author(s):  
Y Verma

Aquatic toxicity of textile dyes and textile and dye industrial effluents were evaluated in an acute toxicity study using Daphnia magna as an aquatic experimental animal model. The 48-h EC50 value for the azo dyes, Remazol Parrot Green was 55.32 mg/L and for Remazol Golden Yellow was 46.84 mg/L. Whereas 48-h EC50 values for three dye industrial effluents (D1, D2, and D3) were 14.12%, 15.52%, and 29.69%, respectively. Similarly, EC50 value for three textile mill effluents (T1, T2, and T3) were >100%, 62.97%, and 63.04%, respectively. These results also showed linear relationship with high degree of confidence ( r2 = >0.84 to >0.99) between immobility and test concentrations. The ratio of 24 to 48-h EC50 remains to be in between 1.1 and 1.2. The general criteria of toxicity classification showed that both dyes were minor acutely toxic having 48-h EC50 in between 10 and 100 mg/L. Of the six textile and dye industrial effluents tested, one was not acutely toxic (48-h EC50 > 100%) and five were minor acutely toxic (48-h EC50 > 14.12–29.69%). The toxicity classification of effluent based on toxic unit (TU) showed that of the six effluents tested five were found toxic (TU = >1) and one was non-toxic (TU = <1). Thus, dye effluents showed highest toxicity and textile effluents lowest toxicity. The study also suggested that the assay with D. magna was an excellent method for evaluation of aquatic toxicity of dyes and dyes containing industrial effluents.


2017 ◽  
Vol 14 (3) ◽  
pp. 77-93 ◽  
Author(s):  
Sumeer Khanna ◽  
Patrick McCluskey ◽  
Avram Bar-Cohen ◽  
Bao Yang ◽  
Michael Ohadi

Abstract Traditional power electronics for military and fast computing applications are bulky and heavy. The “mechanical design” of electronic structure and “materials” of construction of the components have limitations in performance under very high temperature conditions. The major concern here is “thermal management.” To be more specific, this refers to removal of high-concentration hotspot heat flux &gt;5 kW/cm2, background heat flux &gt;1 kW/cm2, and “miniaturization” of device within a substrate thickness of &lt;100 μm. We report on the novel applications of contact-based thermoelectric cooling (TEC) to successful implementations of high-conductivity materials - diamond substrate grown on gallium nitride (GaN)/AlGaN transistors to keep the hotspot temperature rise of device below 5 K. The requirement for smarter and faster functionality along with a compact design is considered here. These efforts have focused on the removal of higher levels of heat flux, heat transfer across interface of junction and substrate, advanced packaging and manufacturing concepts, and integration of TEC of GaN devices to nanoscale. The “structural reliability” is a concern and we have reported the same in terms of mean time to failure (cycles) of SAC305 (96.5% tin, 3% silver, 0.5% cu) solder joint by application of Engelmaier's failure model and evaluation of stresses in the structure. The mathematical equation of failure model incorporates the failure phenomena of fatigue and creep in addition to the dwell time, average solder temperature, and plastic strain accumulation. The approach to this problem is a nonlinear finite element analysis technique, which incorporates thermal, mechanical, and thermoelectric boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document