scholarly journals Activated carbon incorporation on forward osmosis membrane surface for enhanced performance

Author(s):  
Reshma Lakra ◽  
Malini Balakrishnan ◽  
Subhankar Basu

Abstract Cellulose triacetate (CTA) is the first-generation forward osmosis (FO) membrane used for desalination. There have been few chemical modifications of the CTA membrane surface. It has improved membrane hydrophilicity, water flux, and salt rejections compared to unmodified CTA membranes. Chitosan containing porous materials as composites resulted in increased pore characteristics. It has motivated to modify the surface of the commercial CTA forward osmosis (FO) membrane by surface coating with chitosan (CS) – powdered activated carbon (AC) mix. The membrane morphology was characterized by SEM, FTIR-ATR, contact angle measurement and AFM. Operation conditions for FO such as the orientation of the membrane active layer, feed and draw solution flow rates, type and concentration of draw salt were optimized with the original CTA membrane. The modified membrane exhibited around two-fold increase in the water flux and reduced reverse salt flux compared to the original CTA membrane. The improved water flux was attributed to the CS-AC coating enhancing water wettability of the membrane surface and the porous AC generating additional water flow channels. Overall, the water flux of the CTA-CS-AC membrane developed in this work was superior to that of CTA and cellulose acetate (CA) membranes reported in the literature.

2017 ◽  
Vol 13 (1) ◽  
pp. 94-102
Author(s):  
Ahmed Faiq Al-Alalawy ◽  
Talib Rashid Abbas ◽  
Hadeer Kadhim Mohammed

The present work aims to study forward osmosis process using different kinds of draw solutions and membranes. Three types of draw solutions (sodium chloride, sodium formate, and sodium acetate) were used in forward osmosis process to evaluate their effectiveness with respect to water flux and reverse salt flux. Experiments conducted in a laboratory-scale forward osmosis (FO) unit in cross flow flat sheet membrane cell.  Three types of membranes (Thin film composite (TFC), Cellulose acetate (CA), and Cellulose triacetate (CTA)) were used to determine the water flux under osmotic pressure as a driving force. The effect of temperature, draw solution concentration, feed and draw solution flow rate, and membrane types, were studied with respect to water flux. The results showed an increase in water flux with increasing feed temperature and draw solution concentrations In addition, the flux increased with increasing feed flow rate while the flux was inversely proportional with the draw solution flow rate. The results showed that reverse osmosis membranes (TFC and CA) are not suitable for using in FO process due to the relatively obtained low water flux when compared with the flux obtained by forward osmosis membrane (CTA). NaCl draw solution gave higher water flux than other draw solutions and at the same time, revealed higher reverse salt flux.


2019 ◽  
Vol 20 (1) ◽  
pp. 240-250 ◽  
Author(s):  
Maryam Taghizadeh ◽  
Daryoush Yousefi Kebria ◽  
Farhad Qaderi

Abstract Water stress and environmental concerns have driven research into the treatment of produced water. In this study, a combination of forward osmosis and photocatalyst system was used for simultaneous salt removal and treatment of produced water. Furthermore, biosurfactant as a novel draw solution and the three types of forward osmosis membranes (cellulose triacetate with and without titanium dioxide (TiO2) and graphene oxide (GO) nanoparticles) were investigated. The morphology and distribution of the TiO2 and TiO2/GO on the membrane surface were assessed by various analyses including field emission scanning electron microscopy, energy dispersive X-ray and contact angle analysis. The results demonstrated that the reverse salt flux was only 0.2 g/m2 h. Moreover, benzene, toluene, ethylbenzene, and xylene (BTEX) removal efficiency in the cellulose triacetate with TiO2 and TiO2/GO membrane under UVC radiation was 62% and 78%, respectively, while the data obtained in visible light reached 80%. The use of TiO2 and TiO2/GO membranes significantly improved the permeability, water flux, photocatalytic degradation of pollutants and desalination of produced water.


Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 438
Author(s):  
Chaeyeon Kim ◽  
Chulmin Lee ◽  
Soo Wan Kim ◽  
Chang Seong Kim ◽  
In S. Kim

The number of chronic renal disease patients has shown a significant increase in recent decades over the globe. Hemodialysis is the most commonly used treatment for renal replacement therapy (RRT) and dominates the global dialysis market. As one of the most water-consuming treatments in medical procedures, hemodialysis has room for improvement in reducing wastewater effluent. In this study, we investigated the technological feasibility of introducing the forward osmosis (FO) process for spent dialysate reuse. A 30 LMH of average water flux has been achieved using a commercial TFC membrane with high water permeability and salt removal. The water flux increased up to 23% with increasing flowrate from 100 mL/min to 500 mL/min. During 1 h spent dialysate treatment, the active layer facing feed solution (AL-FS) mode showed relatively higher flux stability with a 4–6 LMH of water flux reduction while the water flux decreased significantly at the active layer facing draw solution (AL-DS) mode with a 10–12 LMH reduction. In the pressure-assisted forward osmosis (PAFO) condition, high reverse salt flux was observed due to membrane deformation. During the membrane filtration process, scaling occurred due to the influence of polyvalent ions remaining on the membrane surface. Membrane fouling exacerbated the flux and was mainly caused by organic substances such as urea and creatinine. The results of this experiment provide an important basis for future research as a preliminary experiment for the introduction of the FO technique to hemodialysis.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 566
Author(s):  
Ruwaida Abdul Wahid ◽  
Wei Lun Ang ◽  
Abdul Wahab Mohammad ◽  
Daniel James Johnson ◽  
Nidal Hilal

Fertilizer-drawn forward osmosis (FDFO) is a potential alternative to recover and reuse water and nutrients from agricultural wastewater, such as palm oil mill effluent that consists of 95% water and is rich in nutrients. This study investigated the potential of commercial fertilizers as draw solution (DS) in FDFO to treat anaerobic palm oil mill effluent (An-POME). The process parameters affecting FO were studied and optimized, which were then applied to fertilizer selection based on FO performance and fouling propensity. Six commonly used fertilizers were screened and assessed in terms of pure water flux (Jw) and reverse salt flux (JS). Ammonium sulfate ((NH4)2SO4), mono-ammonium phosphate (MAP), and potassium chloride (KCl) were further evaluated with An-POME. MAP showed the best performance against An-POME, with a high average water flux, low flux decline, the highest performance ratio (PR), and highest water recovery of 5.9% for a 4-h operation. In a 24-h fouling run, the average flux decline and water recovered were 84% and 15%, respectively. Both hydraulic flushing and osmotic backwashing cleaning were able to effectively restore the water flux. The results demonstrated that FDFO using commercial fertilizers has the potential for the treatment of An-POME for water recovery. Nevertheless, further investigation is needed to address challenges such as JS and the dilution factor of DS for direct use of fertigation.


2019 ◽  
Vol 1 (1) ◽  
pp. 18-32 ◽  
Author(s):  
Ke Zheng ◽  
Shaoqi Zhou

Abstract In this study, cyanoethyl cellulose (CEC) was used as a membrane material, and polyvinylpyrrolidone (PVP) was used as pore-forming agent to prepare the substrates for the thin-film composite (TFC) forward osmosis (FO) membrane for the first time. The experimental results demonstrate that the properties of the substrates were significantly improved after PVP was added. The scanning electron microscope (SEM) images show that a two-sublayer structure, a fringe-like top sublayer and macrovoids with sponge-like wall bottom sublayer, were formed after the addition of PVP. These improvements contributed to improved membrane performance during FO tests. Meanwhile, after adding PVP, the TFC membranes exhibited good water flux, and excellent specific reverse salt flux. For instance, the TFC-M2 exhibited 9.10/20.67 LMH water flux, 1.35/2.24 gMH reverse salt flux, and 0.15/0.11 g/L specific reverse salt flux in FO/pressure-retarded osmosis mode while using 1 M NaCl as the draw solution and deionized (DI) water as the feed solution.


Membranes ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 108
Author(s):  
Alibek Omir ◽  
Aliya Satayeva ◽  
Aigerim Chinakulova ◽  
Arailym Kamal ◽  
Jong Kim ◽  
...  

This study aims to examine the scaling and performance of flat sheet aquaporin FO membranes in the presence of calcium salts. Experiments showed that the application of calcium sulphate (CaSO4) resulted in an 8–78% decline in the water flux. An increase in the cross-flow velocity from 3 to 12 cm/s reduced the decline in the flux by 16%. The deposition of salt crystals on the membrane surface led to the alteration in the membrane’s intrinsic properties. Microscopy, attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, and X-Ray fluorescence (XRF) analyses confirmed measurements of the zeta potential and contact angle. The use of a three-salt mixture yielded severe scaling as compared with the application of calcium sulphate dehydrate (CaSO4 × 2H2O), i.e., a result of two different crystallisation mechanisms. We found that the amount of sodium chloride (NaCl), saturation index, cross-flow velocity, and flow regime all play an important role in the scaling of aquaporin FO flat sheet membranes.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 448
Author(s):  
Jin Fei Sark ◽  
Nora Jullok ◽  
Woei Jye Lau

The structural (S) parameter of a medium is used to represent the mass transport resistance of an asymmetric membrane. In this study, we aimed to fabricate a membrane sublayer using a novel composition to improve the S parameter for enhanced forward osmosis (FO). Thin film composite (TFC) membranes using polyamide (PA) as an active layer and different polysulfone:polyethersulfone (PSf:PES) supports as sublayers were prepared via the phase inversion technique, followed by interfacial polymerization. The membrane made with a PSf:PES ratio of 2:3 was observed to have the lowest contact angle (CA) with the highest overall porosity. It also had the highest water permeability (A; 3.79 ± 1.06 L m−2 h−1 bar−1) and salt permeability (B; 8.42 ± 2.34 g m−2 h−1), as well as a good NaCl rejection rate of 74%. An increase in porosity at elevated temperatures from 30 to 40 °C decreased Sint from 184 ± 4 to 159 ± 2 μm. At elevated temperatures, significant increases in the water flux from 13.81 to 42.86 L m−2 h−1 and reverse salt flux (RSF) from 12.74 to 460 g m−2 h−1 occur, reducing Seff from 152 ± 26 to 120 ± 14 μm. Sint is a temperature-dependent parameter, whereas Seff can only be reduced in a high-water- permeability membrane at elevated temperatures.


2021 ◽  
Vol 14 (1) ◽  
pp. 45-52
Author(s):  
Aya Mohammed Kadhom ◽  
Mustafa Hussein Al-Furaiji ◽  
Zaidun Naji Abudi

Abstract. The forward osmosis (FO) process has been considered for desalination as a competitive option with respect to the traditional reverse osmosis process. The interfacial polymerization (IP) reaction between two monomers (i.e., m-phenylenediamine, MPD, and 1,3,5-benzenetricarbonyl chloride, TMC) is typically used to prepare the selective polyamide layer that prevents salts and allows water molecules to pass. In this research, we investigated the effect of preparation conditions (MPD contact time, TMC reaction time, and addition of an amine salt) on the FO performance in terms of water flux and salt flux. The results showed that increasing MPD contact time resulted in a significant increase in the water flux and salt flux. However, increasing TMC reaction time caused a decline in both the water flux and the salt flux. The optimum condition that gave the highest water flux (64 L m−2 h−1) was found to be as 5 min for MPD and 1 min for TMC. The addition of an amine salt of camphorsulfonic acid-triethylamine (CSA-TEA) was able to have an apparent effect on the FO process by increasing the water flux (74.5 L m−2 h−1).


2021 ◽  
Vol 43 (3) ◽  
pp. 187-195
Author(s):  
Kyungkeun Jo

Objectives : The purpose of this study was to examine how the presence of trace organic compounds (TROCs) affects water flux and heavy metal rejection in forward osmosis (FO) filtration when feed solution (FS) contains TROCs and heavy metals.Methods : Four FS (① only heavy metals, ② heavy metals and Trimethoprim, ③ heavy metals and Ibuprofen, ④ heavy metals and Triclosan) were used, and the FO filtration experiments were conducted to perform comparative analysis on the water flux and the rejection rate depending on the FS type.Results and Discussion : The water flux was higher when FS contained TROCs except Ibuprofen, compared to FS containing only heavy metals. It is speculated that the increased water flux was influenced by the decrease in the internal concentration polarization (ICP), which was caused by the adsorption of the TROCs in the support layer of the membrane. The water flux decreased when FS contained Ibuprofen, and this may be because reverse salt flux increased due to the Gibbs-Donnan effect. The rejection rate was not affected by TROCs when heavy metals were mostly rejected in FO filtration, but for the heavy metal that was not fully rejected, the rejection rate increased when FS contained TROCs. It is speculated that this was mainly due to clogging caused by the adsorption on the membrane.Conclusions : It was demonstrated that the presence of TROCs in FS can affect water flux and the rejection rate of heavy metals. Therefore, when the FS containing heavy metals and various organic substances is treated by FO filtration, the performance of the filtration is expected to change depending on the composition of the solution.


Author(s):  
J. Martin ◽  
G. Kolliopoulos ◽  
V. G. Papangelakis

Abstract This work reports on efforts to develop an integrated continuous forward osmosis system for the recovery of water from wastewater streams, highlighting critical process parameters to minimize energy consumption. Forward osmosis experiments were performed using NaCl draw solutions of various concentrations and the intrinsic membrane parameters (water permeability, draw solution permeability, and structural parameter) were then determined via nonlinear regression using MATLAB. The experimental data was then used to validate a theoretical water flux model, which was subsequently applied to simulate the forward osmosis performance under different hydrodynamic conditions using both NaCl and TMA-CO2-H2O (TMA: trimethylamine) draw solutions. Analysis of the energy efficiency of the TMA-CO2 draw solution regeneration stage revealed that the draw solution flow rate has a significant impact on energy consumption. Also, increasing the feed flow rate was found to slightly enhance the water flux up to 2.5%, while having a negligible impact on the downstream regeneration process energy consumption.


Sign in / Sign up

Export Citation Format

Share Document