scholarly journals Changes in soil-water content and heat transport under different simulated systems of drip irrigation in gravel-mulched fields

Author(s):  
Wenju Zhao ◽  
Yali Wang ◽  
Junhong Hu ◽  
Zongli Li

Abstract Gravel mulching is an ancient mulching system with a history of more than 300 years in China. To explore the changes of soil-water content (SWC) and heat transport in watermelon gravel-mulched fields under the drip irrigation, we simulated three irrigation quotas (W1, 180 m3/hm2; W2, 270 m3/hm2; and W3, 360 m3/hm2) and three irrigation frequencies (F1, three times; F2, six times; and F3, nine times) based on HYDRUS-2D. The results indicated that peak SWC increased with irrigation quota. The range of fluctuation of SWC decreased as irrigation frequency increased. The temperature of the 0–40 cm soil layer varied with air temperature, but the range of fluctuation decreased with depth. Irrigation affected the distribution of soil water, increased soil heat capacity, and reduced the impact of air temperature on soil temperature, thus delaying the impact of air temperature on soil temperature. High-frequency drip irrigation could therefore effectively improve SWC, reduce water stress during the period of watermelon growth, and effectively delay the effect of air temperature on soil temperature, providing a theoretical basis for developing reasonable irrigation strategies and regulating soil water and heat in gravel-mulched fields.

2018 ◽  
Vol 2 (1) ◽  
pp. 28-48
Author(s):  
Napsiah Heluth ◽  
J. Matinahoru ◽  
Fransina Latumahina

The research study aims to determine the ecological conditions of dusung and non dusung, and the role of the contribution to environmental conservation in Ureng Village. The research method used was purposive sampling with observation parameters were microclimate (CO2 content, air temperature, humidity), vegetation conditions and soil conditions (soil temperature, soil moisture, soil pH, soil moisture content, soil macrofauna and organic C) . The results of  Paired of each parameter measured mostly show a smaller calculated t value compared to the t0.05 table value (1.8595) which means that the parameter is not a real difference, ie for the air humidity, t count = 0.27,; soil pH, t count = 0.6; soil macrofauna, t count = -0.66 and vegetation, t count = 1.01. As for the parameters of CO2; air temperature, soil temperature, , soil water content and organic C, t value of CO2 gives the value t count = - 16.06; air temperature = -5.11; soil temperature = -3.62; soil moisture, t count = 2,16; soil water content = 8.47, and C-Organic = 8.53; t count value which is greater than t table value which shows that there is a significant difference between CO2, air temperature, soil temperature, soil moisture, soil water content and C-Organic content in the dusung area which is greater than in the non-dusung area. From the results of the analysis it is known that dusung has a better role in environmental conservation when compared to non dusung which is indicated by the value of CO2 air temperature, soil temperature, soil moisture, soil water content and C-organic content.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 74
Author(s):  
Weiwei Cong ◽  
Kaijie Yang ◽  
Feng Wang

Northern hemisphere evergreen needleleaf forest (ENF) contributes a significant fraction of global water exchange but regional transpiration (T) observation in ENF ecosystems is still challenging. Traditional remote sensing techniques and terrestrial biosphere models reproduce the transpiration seasonality with difficulty, and with large uncertainties. Solar-induced chlorophyll fluorescence (SIF) emission from vegetation correlates to photosynthesis at multiple spatial and temporal scales. However, how SIF links to transpiration of evergreen forest during seasonal transition is unclear. Here, we explored the relationship between canopy SIF and T retrieved from ground observation towers in ENF. We also examined the role of meteorological and soil factors on the relationship between SIF and T. A slow decrease of SIF and T with a fast reduction in photosynthetically active radiation (PAR), air temperature, vapor pressure deficit (VPD), soil temperature and soil water content (SWC) were found in the ENF during the fall transition. The correlation between SIF and T at hourly and daily scales varied significantly among different months (Pearson correlation coefficient = 0.29–0.68, p < 0.01). SIF and T were significantly linearly correlated at hourly (R2 = 0.53, p < 0.001) and daily (R2 = 0.67, p < 0.001) timescales in the October. Air temperature and PAR were the major moderating factors for the relationship between SIF and T in the fall transition. Soil water content (SWC) influenced the SIF-T relationship at an hourly scale. Soil temperature and VPD’s effect on the SIF-T relationship was evident at a daily scale. This study can help extend the possibility of constraining ecosystem T by SIF at an unprecedented spatiotemporal resolution during season transitions.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 778C-778
Author(s):  
Kun Xu* ◽  
Xiufeng Wang ◽  
Fang Wang

Mulching with straw increase soil water content, air relative humidity and air temperature, but decreased soil temperature. Though mulching with straw didn't change light intensity, ginger growth and yield were the same as shading. The growth and yield under shading and mulching with straw were both higher than that of naked soil.


2014 ◽  
Vol 9 (25) ◽  
pp. 1990-2004
Author(s):  
DHAVU Khumbulani ◽  
YASUDA Hiroshi ◽  
SENZANJE Aidan ◽  
ANYOJI Hisao

Soil Research ◽  
2008 ◽  
Vol 46 (3) ◽  
pp. 273 ◽  
Author(s):  
Xiaobin Jin ◽  
Shenmin Wang ◽  
Yinkang Zhou

The Sanjiang Plain of north-east China is presently the second largest freshwater marsh in China. The drainage and use of marshes for agricultural fields occurred in the past 50 years, resulting in the increase in cultivated land from about 2.9 × 108 m2 in 1893 to 4.57 × 1010 m2 in 1994. Under human disturbance in the past half century, the environment in Sanjiang Plain has had significant change. We hypothesised that environmental factors such as soil moisture, soil temperature, and soil N levels affect the rates of soil organic C mineralisation and the nature of the controls on microbial CO2 production to change with depth through the soil profile in the freshwater marsh in the Sanjiang Plain. In a series of experiments, we measured the influence of soil temperature, soil water content, and nitrogen additions on soil microbial CO2 production rates. The results showed that Q10 values (the factor by which the CO2 production rate increases when the temperature is increased by 10°C) significantly increased with soil depth through the soil profile (P < 0.05). The average Q10 values for the surface soils were 2.7 (0–0.2 m), significantly lower than that (average Q10 values 3.3) for the subsurface samples (0.2–0.6 m) (P < 0.05), indicating that C mineralisation rates were more sensitive to temperature in subsurface soil horizons than in surface horizons. The maximum respiration rate was measured at 60% water hold capacity for each sample. The quadratic equation function adequately describes the relationship between soil respiration and soil water content, and the R2 values were > 0.80. The sensitivity of microbial CO2 production rate response to soil water content for surface soils (0–0.2 m) was slightly lower than for subsurface soils (0.2–0.6 m). The responses of actual soil respiration rates to nitrogen fertilisation were different for surface and subsurface soils. In the surface soils (0–0.2 m), the addition of N caused a slight decreased in respiration rates compared with the control, whereas, in the subsurface soils (0.2–0.6 m), the addition of N tended to increase microbial CO2 production rates, and the addition of 10 µg N/g soil treatment caused twice the increase in C mineralisation rates of the control. Our results suggested that the responses of microbial CO2 production to changes in soil moisture, soil temperature, and soil N levels varied with soil depth through the profile, and subsurface soil organic C was more sensitive to temperature increase and nitrogen inputs in the freshwater marsh of the Sanjiang Plain.


2021 ◽  
Vol 34 (4) ◽  
pp. 887-894
Author(s):  
GUSTAVO HADDAD SOUZA VIEIRA ◽  
ARILDO SEBASTIÃO SILVA ◽  
ARUN DILIPKUMAR JANI ◽  
LUSINERIO PREZOTTI ◽  
PAOLA ALFONSA VIEIRA LO MONACO

ABSTRACT This study aimed to determine how crop residue placement and composition would affect soil water content and temperature during the dry season in the central region of Espírito Santo state, Brazil. A 19-week field study was conducted from April to August 2017. A 2 x 4 factorial study with four replications was implemented using a randomized complete block design. Factors were soil management [conventional tillage (CT) and no soil disturbance (ND)] and residue amendment [maize (Zea mays L.), sunn hemp (Crotalaria juncea L.), a maize-sunn hemp mixture, and a no amendment control]. Soil water content and temperature were measured weekly at predetermined soil depth intervals. Soil water content was higher in ND plots amended with surface residues than under all other treatments in the 0 to 0.05 m depth range. All residue amendments in this range were equally effective in conserving soil water. Surface residues reduced soil temperature by up to 8.4 °C relative to the control in ND plots. Incorporating residue amendments by CT cancelled all temperature-moderating benefits provided by surface residues. These results indicate that surface residues from cereals, legumes, or cereal/legume mixtures are equally effective in conserving soil water and moderating soil temperature during the dry season. Additional research is needed to determine how improved soil environmental conditions, generated by surface residues, would affect nutrient acquisition and crop performance.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11766
Author(s):  
Mao Yang ◽  
Runya Yang ◽  
Yanni Li ◽  
Yinghua Pan ◽  
Junna Sun ◽  
...  

The aim of this study was to find a material suited for the prevention of evaporative water loss and salt accumulation in coastal saline soils. One-dimensional vertical water infiltration and phreatic evaporation experiments were conducted using a silty loam saline soil. A 3-cm-thick layer of corn straw, biochar, and peat was buried at the soil depth of 20 cm, and a 6-cm-thick layer of peat was also buried at the same soil depth for comparison. The presence of the biochar layer increased the upper soil water content, but its ability to inhibit salt accumulation was poor, leading to a high salt concentration in the surface soil. The 3-cm-thick straw and 6-cm-thick peat layers were most effective to inhibit salt accumulation, which reduced the upper soil salt concentration by 96% and 93%, respectively. However, the straw layer strongly inhibited phreatic evaporation and resulted in low water content in the upper soil layer. Compared with the straw layer, the peat layer increased the upper soil water content. Thus, burying a 6-cm-thick peat layer in the coastal saline soil is the optimal strategy to retain water in the upper soil layer and intercept salt in the deeper soil layer.


2020 ◽  
Vol 68 (4) ◽  
pp. 351-358
Author(s):  
Miroslav Fér ◽  
Radka Kodešová ◽  
Barbora Kalkušová ◽  
Aleš Klement ◽  
Antonín Nikodem

AbstractThe aim of the study was to describe the impact of the soil water content and sulfamethoxazole, SUL, (antibiotic) concentration in soil on the net CO2 efflux. Soil samples were taken from topsoils of a Haplic Fluvisol and Haplic Chernozem. Soil samples were packed into the steel cylinders. The net CO2 efflux was measured from these soil columns after application of fresh water or SUL solution at different soil water contents. The experiments were carried out in dark at 20°C. The trends in the net CO2 efflux varied for different treatments. While initially high values for water treatment exponentially decreased in time, values for solution treatment increased during the first 250–650 minutes and then decreased. The total net CO2 effluxes measured for 20 hours related to the soil water content followed the second order polynomial functions. The maximal values were measured for the soil water content of 0.15 cm3 cm−3 (Haplic Fluvisol with water or solution, Haplic Chernozem with solution) and 0.11 cm3 cm−3 (Haplic Chernozem with water). The ratios between values measured for solution and water at the same soil water contents exponentially increased with increasing SUL concentration in soils. This proved the increasing stimulative influence of SUL on soil microbial activity.


2012 ◽  
Vol 226-228 ◽  
pp. 2098-2102 ◽  
Author(s):  
Xin Jing Wang ◽  
Zhen Qi Hu ◽  
Yan Ling Zhao ◽  
Yu Ming Guo ◽  
Pei Jun Wang

Using the ground-penetrating radar (GPR) system with the different frequencies and neutron probe, combing with radar image interpretation and the amplitude spectrum, the impact of GPR detection effects on the soil taxonomy and underground pipe were analyzed. The results indicate that when the soil content is 17.02%, the effect on soil taxonomy of 750MHZ antenna is better than 400MHZ, but the effect on underground pipe is same. As soil water content increases to 25.333%, the soil taxonomy of two antennas’ detection tends to same, and “fake stratifications” existed. The soil water content accelerates to 36.389%, the detection effect on soil taxonomy and underground pipe is so poor. Attenuation mechanism and propagation characteristics of the high electromagnetic wave were presented to interpret those phenomena. The above analysis shows that the soil water content is one of the main prerequisites for the applications of GPR. Some indicators could be provided to nondestructive test in land consolidation project quality by GPR from this research.


Sign in / Sign up

Export Citation Format

Share Document