scholarly journals Mathematical simulation of air-water flow along Ski Jump Jet

Author(s):  
Roghayeh Ahmadpour ◽  
Hamed Sarkardeh ◽  
Hazi Azamathulla

Abstract In the present study, using a quasi 3D analytical simulation, air concentration distribution in ski jump generated jet is calculated. A numerical simulation is also performed to verify the results of the analytical model in parallel with the available experimental and another analytical data. By solving continuity and momentum equations in case of air-water flow for three different cases, it was confirmed that the air concentrations along the ski jet are uniquely linked to the relative black water core length. Results showed that the black water core length is also influenced by the approach flow depth, Froude number, geometrical parameters of ski jump and the chute bottom angle. Finally, an analytical equation is proposed to predict the air concentration distribution along the ski jump jet regarding different hydraulic and geometric parameters. By calculating the velocity profiles along the jet, it showed that increasing the air concentration reduces the jet velocity profile.

2020 ◽  
Vol 20 (4) ◽  
pp. 1546-1553
Author(s):  
Yu Zhou ◽  
Jianhua Wu ◽  
Fei Ma ◽  
Jianyong Hu

Abstract In skimming flow, a uniform flow can be achieved and the flow depth, velocity and air concentration remain constant if a stepped spillway is sufficiently long. In this study, physical model experiments were performed to investigate the uniform characteristics and energy dissipation of a hydraulic-jump-stepped spillway, which is a new type of stepped spillway for increasing the unit discharge capacity and energy dissipation. Based on the redefinition of uniform flow, experimental results show that at a given stepped spillway slope, a smaller height for the beginning of the uniform flow region, a greater uniform aerated flow depth and a greater uniform equivalent clear water flow depth can be obtained as compared with the traditional stepped spillway due to strong aeration in the aeration basin. Under the condition of uniform flow, the energy dissipation rate of stepped spillways can be estimated by the equivalent clear water flow depth with given inflow conditions. Compared with the traditional stepped spillway, the uniform flow over the hydraulic-jump-stepped spillway has a smaller specific energy, revealing that the hydraulic-jump-stepped spillway is more advantageous for dissipating energy, especially at large unit discharges.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Chi Yao ◽  
Changming Yang ◽  
Yan Lan ◽  
Qinghui Jiang ◽  
Shuihua Jiang ◽  
...  

In order to study the loss of root stones under action of water flow in dam buttress, based on Flow-3D, a mathematical model was established. At first, the physical experiment was carried out about water drag force on a 0.04 m×0.04 m×0.04 m cubic block. And then a numerical flume model about this experiment was established in Flow-3D software. The values of drag force were compared between the numerical and experimental results, and the percentage of error was less than 5%. Thus, the numerical model in Flow-3D was accurate and available. Then, a numerical simulation on root stones loss in an actual dam buttress project was carried out. Since the actual flow is turbulent, the RNGk-εturbulence model was used. And VOF method, FAVOR technology, and GMO model were also used in this simulation. The numerical results showed flow depth, pressure, velocity, turbulent energy, and root stones loss. Because water level of the inflow increased with time continuously, flow depth and velocity also increased, and the root stones would be lost. The increase in flow velocity was the fastest in the dam head, and the start time of root stones loss was also the earliest. The most serious area of root stones loss is the dam head, and the serious second area is the upper cross corner. Those root stones would have the farthest lost distance in the dam head. The root stones loss was also serous in the upstream face. However, the root stones in the upstream face and the down cross corner were less affected by water flow, so there were no root stones loss phenomena. Thus, in the actual project, the dam head, the upper cross corner, and the upstream face should get more attention.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 153
Author(s):  
Stéphane Terrier ◽  
Michael Pfister ◽  
Anton J. Schleiss

Stepped spillways are frequently limited to specific discharges under around 30 m2/s due to concerns about potential cavitation damages. A small air concentration can prevent such damages and the design of bottom aerators is well established for smooth chutes. The purpose of this study is to systematically investigate the performance of a deflector aerator at the beginning of stepped chutes. Six parameters (chute angle, step height, approach flow depth, approach flow Froude number, deflector angle and deflector height) are varied in a physical model. The spatial air concentration distribution downstream of the aerator, the cavity sub-pressure, water discharge and air discharges are measured. The results describe the commonly used air entrainment coefficient, the jet length, as well as the average and bottom air concentration development to design an aerator. The lowest bottom air concentration measured in all tests is higher than the air concentration recommended in literature to protect against cavitation damages. And, unlike smooth chutes, there appears to be no significant air detrainment downstream of the jet impact. One deflector aerator seems therefore sufficient to provide protection of a stepped spillway.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Prasanta Kumar Mohanta ◽  
B. T. N. Sridhar ◽  
R. K. Mishra

Abstract Experiments and simulations were carried on C-D nozzles with four different exit geometry aspect ratios to investigate the impact of supersonic decay characteristics. Rectangular and elliptical exit geometries were considered for the study with various aspect ratios. Numerical simulations and Schlieren image study were studied and found the agreeable logical physics of decay and spread characteristics. The supersonic core decay was found to be of different length for different exit geometry aspect ratio, though the throat to exit area ratio was kept constant to maintain the same exit Mach number. The impact of nozzle exit aspect ratio geometry was responsible to enhance the mixing of primary flow with ambient air, without requiring a secondary method to increase the mixing characteristics. The higher aspect ratio resulted in better mixing when compared to lower aspect ratio exit geometry, which led to reduction in supersonic core length. The behavior of core length reduction gives the identical signature for both under-expanded and over-expanded cases. The results revealed that higher aspect ratio of the exit geometry produced smaller supersonic core length. The aspect ratio of cross section in divergent section of the nozzle was maintained constant from throat to exit to reduce flow losses.


2003 ◽  
Vol 129 (4) ◽  
pp. 237-246 ◽  
Author(s):  
Fariborz Abbasi ◽  
Floyd J. Adamsen ◽  
Douglas J. Hunsaker ◽  
Jan Feyen ◽  
Peter Shouse ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document