Radiochemical Techniques Applied to Laboratory Studies of Water Leaching of Heavy Metals from Coal Fly Ash

1983 ◽  
Vol 15 (11) ◽  
pp. 25-47 ◽  
Author(s):  
L Goetz

Assessment of the potential environmental impact of heavy metals (HM) mobilized by coal-fired power plants showed that water leaching of HM from pulverized fuel ash may for certain HM constitute an important pathway to the aquatic environment. This process was therefore investigated in more detail by laboratory experiments. Batch experiments were performed in order to simulate ash pond conditions, whereas column experiments were carried out to represent water leaching from fly ash deposits. Using highly sensitive radiochemical techniques such as radioactive tracers and neutron activation of fly ash the fate of a single HM could be easily followed even in very low concentration experiments. Employing radioisotopic tracers the distribution coefficients of simple ionic forms of As, Sb, Bi, Se, Te, Cr, Mo, W, Ni, Cd in a coal fly ash/water system could be determined as a function of pH. Results obtained on the adsorption and desorption behaviour of HM on coal fly ash can be explained in part on the basis of the surface predominance and the aqueous chemistry of single ionic, mainly anionic, forms of the relative elements. But ion exchange and coprecipitation phenomena also seem to be important processes. The nature and concentration of ions contained originally in the water used (distilled water, fly ash leachate and seawater) were found to have a strong influence on the sorptive behaviour of HM on coal ashes. The high degree of applicability of radiochemical and nuclear techniques to coal ash water leaching problems has been demonstrated and further points for subsequent research in this field possibly using nuclear techniques are indicated.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ricardo Pires dos Santos ◽  
Jorge Martins ◽  
Carlos Gadelha ◽  
Benildo Cavada ◽  
Alessandro Victor Albertini ◽  
...  

Coal ash is a byproduct of mineral coal combustion in thermal power plants. This residue is responsible for many environmental problems because it pollutes soil, water, and air. Thus, it is important to find ways to reuse it. In this study, coal fly ash, obtained from the Presidente Médici Thermal Power Plant, was utilized in the preparation of ceramic supports for the immobilization of the enzyme invertase and subsequent hydrolysis of sucrose. Coal fly ash supports were prepared at several compaction pressures (63.66–318.30 MPa) and sintered at 1200°C for 4 h. Mineralogical composition (by X-ray diffraction) and surface area were studied. The ceramic prepared with 318.30 MPa presented the highest surface area (35 m2/g) and amount of immobilized enzyme per g of support (76.6 mg/g). In assays involving sucrose inversion, it showed a high degree of hydrolysis (around 81%) even after nine reuses and 30 days’ storage. Therefore, coal fly ash ceramics were demonstrated to be a promising biotechnological alternative as an immobilization support for the hydrolysis of sucrose.


2015 ◽  
Vol 773-774 ◽  
pp. 1261-1265 ◽  
Author(s):  
Aeslina Abdul Kadir ◽  
Mohd Ikhmal Haqeem Hassan ◽  
Syed Khairul Hafizi bin Syed Mohamad

The growing demand for electricity resulted in the construction of many coal fired power plants. The increment of the consumption of coal by power plants lead up to production of coal ash. Coal ash contains a range of toxic elements that may have negative effects to human and environmental health. Fly ash (FA) and bottom ash (BA) are the solid residues and mostly arise from coal combustion that being disposed in large quantities every year. The focus of the study is to determine the leachability of Self-Compacting Concrete (SCC) incorporated with FA and BA by using Static Leachate Test (SLT) method. In this study, FA and BA were collected from Kapar Energy Ventures Coal Power Plant in Selangor. The characteristics of Ordinary Portland cement (OPC), FA and BA were determined by using X-Ray Fluorescent (XRF) technique. The different percentages of FA (replace cement) and BA (replace sand) which is 0%, 10%, 20% and 30% were incorporated respectively into SCC. Ten reactors were set up for the leachability test for each solid specimen by using SLT method. The concentrations of leachate samples were analyzed for selected heavy metals content by using Atomic Absorption Spectroscopy (AAS) method. After 40 days conducting the test, the concentrations of selected heavy metals (As, Mn, Cu, Cr, Zn, Ni, Fe and Pb) in the synthetic acid rain leachates from the SCC specimens were significantly lower than the limit specified by the USEPA and EPAV. Therefore, incorporating of FA and BA up to 30% into SCC is potentially feasible.


2020 ◽  
pp. 30-35
Author(s):  
Silviya Boycheva ◽  
Denitza Zgureva

Coal fly ash generated in Thermal Power Plants is utilized for synthesis of zeolites due to its aluminosilicate composition. The highest degree of zeolitization of coal ash in a particular zeolite phase is achieved by double-stage synthesis involving successive alkaline melting and hydrothermal activation of the reaction mixtures, while the uniform distribution of the iron oxides transferred from the raw coal ash is ensured by ultrasonic treatment. However, the applied melting step results in the oxidation of the magnetic iron oxide phases to non-magnetic ones, which results in the loss of magnetic properties of the resulting materials. The present investigation focuses on an improved double- stage synthesis procedure by the addition of raw coal ash containing magnetite between high temperature and low temperature processing. In this way, the magnetic phase is retained in the final product and the magnetic properties of the zeolites are preserved, which is important for their application in the adsorption of pollutants from wastewater.


BMJ Open ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. e038960
Author(s):  
Kristina M Zierold ◽  
Clara G Sears ◽  
Abby N Hagemeyer ◽  
Guy N Brock ◽  
Barbara J Polivka ◽  
...  

IntroductionFly ash is a waste product generated from burning coal for electricity. It is comprised of spherical particles ranging in size from 0.1 µm to over 100 µm in diameter that contain trace levels of heavy metals. Large countries such as China and India generate over 100 million tons per year while smaller countries like Italy and France generate 2 to 3 million tons per year. The USA generates over 36 million tons of ash, making it one of the largest industrial waste streams in the nation. Fly ash is stored in landfills and surface impoundments exposing communities to fugitive dust and heavy metals that leach into the groundwater. Limited information exists on the health impact of exposure to fly ash. This protocol represents the first research to assess children’s exposure to coal fly ash and neurobehavioural outcomes.MethodsWe measure indoor exposure to fly ash and heavy metals, and neurobehavioural symptoms in children aged 6 to 14 years old. Using air pollution samplers and lift tape samples, we collect particulate matter ≤10 µm that is analysed for fly ash and heavy metals. Toenails and fingernails are collected to assess body burden for 72 chemical elements. Using the Behavioural Assessment and Research System and the Child Behaviour Checklist, we collect information on neurobehavioural outcomes. Data collection began in September 2015 and will continue until February 2021.Ethics and disseminationThis study was approved by the Institutional Review Boards of the University of Louisville (#14.1069) and the University of Alabama at Birmingham (#300003807). We have collected data from 267 children who live within 10 miles of two power plants. Children are at a greater risk for environmental exposure which justifies the rationale for this study. Results of this study will be distributed at conferences, in peer-reviewed journals and to the participants of the study.


2020 ◽  
Vol 849 ◽  
pp. 108-112
Author(s):  
Widi Astuti ◽  
Agus Haerudin ◽  
Istihanah Nurul Eskani ◽  
Fajar Nurjaman ◽  
Aulia Pertiwi Tri Yuda ◽  
...  

Indonesia coal ash is predicted to reach 10.8 million tons in the year 2020 but its utilization is still limited. In the last decade, coal ash has become a promising REY source candidate. To determine the potency of REY in Indonesia coal ash, information about element concentration and mineralogy of the ash is essential. In this study, coal ash samples were taken from Paiton-2, Pacitan, Rembang, and Tanjung Jati coal-fired power plants. Element content and mineralogy were analyzed using Inductive Couple Plasma Mass Spectroscopy/Atomic Emission Spectroscopy (ICP-MS/AES), X-Ray Diffractometer (XRD) and petrographic. The results showed that coal fly ash and bottom ash contains critical REY in the range of 38% to 41% with Coutlook larger than one. XRD analysis showed that both fly ash and bottom ash have similar mineral phases with slightly different concentrations. The mineral phase is dominated by amorphous glass, quartz, Fe-bearing minerals, and unburned carbon. The amorphous glass phase in fly ash is in the range of 23 to 34% while in bottom ash between 14 and 34%. Unburned carbon content in fly ash and bottom ashes are 7-13% and 7-19%, respectively. Fe-bearing mineral content in fly ash is 15-20% and bottom ash is 13-20%. In addition, Indonesia coal ash has a higher Heavy-REY enrichment factor than Light-REY. The Enrichment Factor of HREY in fly ash is as much as 1.3 times (in average) of the bottom ash.


2020 ◽  
Vol 7 ◽  
pp. 22
Author(s):  
Silviya Boycheva ◽  
Denitza Zgureva ◽  
Hristina Lazarova ◽  
Katerina Lazarova ◽  
Cyril Popov ◽  
...  

High-grade zeolite nanocomposites are synthesized utilizing solid by-products from combustion of coal for energy production in Thermal Power Plants applying alkaline aging, hydrothermal and fusion-hydrothermal activation procedures. The obtained coal ash zeolites were studied with respect to their chemical and phase composition, morphology, surface parameters and thermal properties. It was found that they are distinguished in nanocrystalline morphology and significant content of iron oxide nanoparticles (γ-Fe2O3, α-Fe2O3, γ-Fe3O4) and doping elements (Cu, Co, Mn, V, W, etc.) transferred from the raw coal ash, and therefore they are assumed as nanocomposites. Coal fly ash zeolite nanocomposites are characterized by a mixed micro-mesoporous texture, significant concentration of acidic Brønsted centers due to their high surface insaturation, high chemical and thermal stabilty. This unique combination of compositional and textural properties predetermines the application of these materials as catalysts for thermal oxidation processes, anticorrosion barrier coatings, carbon capture adsorbents, matrices for hosting functional groups, detergents etc. Examples for coal fly ash zeolite applications for substitution of critical raw materials in practice are provided.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 893
Author(s):  
Shenyong Li ◽  
Penghui Bo ◽  
Lianwei Kang ◽  
Haigang Guo ◽  
Wenyue Gao ◽  
...  

Experiments were conducted to investigate the process of aluminum and lithium extraction from high-alumina coal fly ash (HCFA) generated from coal-fired power plants located in northern China. The presence of mullite and other aluminosilicates lead to low reactivity of coal fly ash. An activation pretreatment that destroys an inert composition of coal is necessary. The activation roasting of coal fly ash using sodium chloride and a subsequent leaching process were performed in this research. The results showed that almost no aluminum and lithium were dissolved under direct water leaching, while about 7% and 10% of those were leached into the acid solution respectively. Adding NaCl enhanced the atmospheric pressure leaching of aluminum and lithium with a leaching rate around 50%. Phase analysis and equilibrium calculations results showed that the roasting reaction between the HCFA and NaCl occurred, which led to generation of main new phase NaAlSi3O8. The pressure extraction efficiencies of aluminum and lithium were increased to about 93% and 98%, respectively. The implications of the findings provide an alternative process for recovering aluminum and lithium from readily available high-alumina coal fly ash.


2020 ◽  
Vol 849 ◽  
pp. 102-107
Author(s):  
Widya Rosita ◽  
Dea Anisa Ayu Besari ◽  
I Made Bendiyasa ◽  
Indra Perdana ◽  
Ferian Anggara ◽  
...  

Indonesia coal ash is predicted to reach 10.8 million tons in the year 2020 but its utilization is still limited. In the last decade, coal ash has become a promising REY source candidate. To determine the potency of REY in Indonesia coal ash, information about element concentration and mineralogy of the ash is essential. In this study, coal ash samples were taken from Paiton-2, Pacitan, Rembang, and Tanjung Jati coal-fired power plants. Element content and mineralogy were analyzed using Inductive Couple Plasma Mass Spectroscopy/Atomic Emission Spectroscopy (ICP-MS/AES), X-Ray Diffractometer (XRD) and petrographic. The results showed that coal fly ash and bottom ash contains critical REY in the range of 38% to 41% with Coutlook larger than one. XRD analysis showed that both fly ash and bottom ash have similar mineral phases with slightly different concentrations. The mineral phase is dominated by amorphous glass, quartz, Fe-bearing minerals, and unburned carbon. The amorphous glass phase in fly ash is in the range of 23 to 34% while in bottom ash between 14 and 34%. Unburned carbon content in fly ash and bottom ashes are 7-13% and 7-19%, respectively. Fe-bearing mineral content in fly ash is 15-20% and bottom ash is 13-20%. In addition, Indonesia coal ash has a higher Heavy-REY enrichment factor than Light-REY. The Enrichment Factor of HREY in fly ash is as much as 1.3 times (in average) of the bottom ash.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 778
Author(s):  
Agnieszka Bęś ◽  
Łukasz Sikorski ◽  
Krzysztof Szreder

Coal fly ash (CFA), which is generated in huge quantities in coal-fired power plants, is a problem worldwide. Mixtures with ash and sewage sludge alter morphological and biochemical characteristics of plants. In this experiment, the response of pine, spruce, beech and alder growing for four years to mineral mixtures based on coal fly ash and high salinity sewage sludge (SS) was studied. The four-year experiment determined the chlorophyll a fluorescence of the tested plants, their height and yield, the salinity level of the tested mixtures and their phytotoxicity. Mixtures of coal ash with sewage sludge proved to be more beneficial to plants than their separate application. After four years, among the studied species, the highest increase in height and biomass was recorded for European alder and Scots pine. These species were also characterized by high photosynthetic indices. Mixtures containing 29% SS created optimal conditions for the development of the studied tree species. Grey alder and ponderosa pine can be recommended for reclamation of degraded areas where CFA and SS mixtures are used.


2008 ◽  
Vol 7 (3) ◽  
pp. 289-293 ◽  
Author(s):  
Maria Harja ◽  
Marinela Barbuta ◽  
Lacramioara Rusu ◽  
Nicolae Apostolescu
Keyword(s):  
Fly Ash ◽  

Sign in / Sign up

Export Citation Format

Share Document