Demonstrating Residential Water Conservation and Reuse in the Sonoran Desert: Casa del Agua and Desert House

1991 ◽  
Vol 24 (9) ◽  
pp. 323-330 ◽  
Author(s):  
Martin M. Karpiscak ◽  
Richard G. Brittain ◽  
Charles P. Gerba ◽  
Kennith E. Foster

Single-family homes are being used to demonstrate and research water conserving and reuse techniques and technologies. These facilities can provide real-world data as well as public information and educational programs. The installation of water-conserving fixtures, rainwater harvesting, and graywater reuse systems and storage can reduce the requirements for potable water by 50 percent. Casa del Agua and Desert House show that the science of conserving resources can be balanced with the art of designing quality desert dwellings.

2018 ◽  
Vol 45 ◽  
pp. 00078
Author(s):  
Grażyna Sakson

Rainwater harvesting is an alternative water supply method that has become popular in recent years around the world. This is mainly due to financial reasons (reducing the cost of potable water and fees for rainwater discharge to the sewerage), but also because of environmental awareness. In Poland, rainwater harvesting systems are not often used because of their low financial viability determined by high system construction costs and the low prices of potable water. Earlier analysis conducted by the author showed that the payback period of investment outlays was from a dozen or so years for large buildings, to a few dozen for single-family houses. This situation may change after the introduction of common fees for discharging rainwater from impervious areas into sewerage, and fees for the reduction of natural retention on newly built-up areas, in accordance with new water regulations. This paper presents a cost analysis of rainwater harvesting systems for ten cities in Poland, with varying annual rainfall depth and various pricing for potable water. Analyses were carried out for a single-family house located in an area equipped with a municipal sewer system, and for a large building, located in an area equipped and not equipped with a municipal sewer system.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2351 ◽  
Author(s):  
Cureau ◽  
Ghisi

This article aims to estimate the reduction of potable water consumption and sewage generation in the city of Joinville, southern Brazil. Four strategies were considered to promote potable water savings: replacement of conventional toilets with dual-flush ones, greywater reuse, rainwater harvesting, and the combination of these three strategies. Residential, public, and commercial sectors were assessed. The potential for potable water savings ranged from 1.7% to 50.5%, and the potential for sewage generation reduction ranged from 2.1% to 52.1%. The single-family residential sector was the most representative for water savings and sewage generation reduction. The public sector would be the least contributor to such reductions. It was found that in the city of Joinville, for low non-potable water demands, greywater reuse was the most viable strategy to save water. When non-potable demand is high and there is a large catchment area, it is recommended to install rainwater harvesting systems. It was concluded that there is a high potential for potable water savings and reduction of sewage generation if measures were adopted in Joinville, but it is necessary to evaluate which strategy is the most appropriate for each building.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1183c-1183 ◽  
Author(s):  
Charles F. Mancino

Arizona's golf and sod industry generates $280 M year-1 in revenue and surpasses the vegetable, cotton and dairy industries. Despite the economic worth of turf, a need still exists to conserve the limited supply of potable water in this harsh Sonoran Desert environment. Mandatory water conservation programs have been developed for many sectors of the Arizona economy. To meet this challenge, the turfgrass industry and government bodies have begun to contribute to the development of research programs which reduce turfgrass water requirements and dependence upon potable water. Current research includes a) determining the minimum water requirements of higher quality turf under conditions of high temperatures and vapor pressure deficits; b) the turfgrass potential of grasses with lower water requirements than bermudagrass; c) the development of a statewide weather station network to predict daily turfgrass water use; and d) determine management strategies for turfgrass irrigated with wastewater effluent. The overall goal of these programs is to produce high quality and functional turf with 20 to 50 percent less water.


2012 ◽  
Vol 3 (3) ◽  
pp. 225-238 ◽  
Author(s):  
Vivek Shandas ◽  
Meenakshi Rao ◽  
Moriah McSharry McGrath

Social and behavioral research is crucial for securing environmental sustainability and improving human living environments. Although the majority of people now live in urban areas, we have limited empirical evidence of the anticipated behavioral response to climate change. Using empirical data on daily household residential water use and temperature, our research examines the implications of future climate conditions on water conservation behavior in 501 households within the Portland (OR) metropolitan region. We ask whether and how much change in ambient temperatures impact residential household water use, while controlling for taxlot characteristics. Based on our results, we develop a spatially explicit description about the changes in future water use for the study region using a downscaled future climate scenario. The results suggest that behavioral responses are mediated by an interaction of household structural attributes, and magnitude and temporal variability of weather parameters. These findings have implications for the way natural resource managers and planning bureaus prepare for and adapt to future consequences of climate change.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 704
Author(s):  
Hussein Al-Ghobari ◽  
Ahmed Z. Dewidar

An increasing scarcity of water, as well as rapid global climate change, requires more effective water conservation alternatives. One promising alternative is rainwater harvesting (RWH). Nevertheless, the evaluation of RWH potential together with the selection of appropriate sites for RWH structures is significantly difficult for the water managers. This study deals with this difficulty by identifying RWH potential areas and sites for RWH structures utilizing geospatial and multi-criteria decision analysis (MCDA) techniques. The conventional data and remote sensing data were employed to set up needed thematic layers using ArcGIS software. The soil conservation service curve number (SCS-CN) method was used to determine surface runoff, centered on which yearly runoff potential map was produced in the ArcGIS environment. Thematic layers such as drainage density, slope, land use/cover, and runoff were allotted appropriate weights to produced RWH potential areas and zones appropriate for RWH structures maps of the study location. Results analysis revealed that the outcomes of the spatial allocation of yearly surface runoff depth ranging from 83 to 295 mm. Moreover, RWH potential areas results showed that the study areas can be categorized into three RWH potential areas: (a) low suitability, (b) medium suitability, and (c) high suitability. Nearly 40% of the watershed zone falls within medium and high suitability RWH potential areas. It is deduced that the integrated MCDA and geospatial techniques provide a valuable and formidable resource for the strategizing of RWH within the study zones.


2021 ◽  
Vol 147 (10) ◽  
pp. 04021061
Author(s):  
Mary Semaan ◽  
Susan D. Day ◽  
Michael Garvin ◽  
Naren Ramakrishnan ◽  
Annie Pearce

2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Vine Valenia David ◽  
Kancitra Pharmawati ◽  
Djoni Kusmulyana Usman

<p>Clean water crisis that occurred in Bandung is caused by land conversion in North Bandung area which is a recharge area into commercial buildings. This increases runoff rate from 40% to 70% that can lead can lead to flooding and reduced groundwater availability. Therefore, it is necessary to save water by implementing water conservation. Considering those problems, this study aims to apply the concept of water conservation in X Apartment building that is located in the North Bandung Region by referring to Mayor Regulation of Bandung in 2016. Water conservation efforts that will be applied are wastewater reuse into water recycle, rainwater harvesting, infiltration well construction and placing water meters. The application of water conservation concept considers two conditions, namely in rainy season and dry season. Total need for clean water can be saved by 45,8% in dry season, while in rainy season clean water can be saved by 31,74%.</p>


Sign in / Sign up

Export Citation Format

Share Document