WATER QUALITY SIMULATION OF TE-CHI RESERVOIR USING TWO-DIMENSIONAL MODELS

1994 ◽  
Vol 30 (2) ◽  
pp. 63-72 ◽  
Author(s):  
Jan-Tai Kuo ◽  
Jiann-Homg Wu ◽  
Wen-sen Chu

The application of a two-dimensional laterally averaged hydrodynamics model (LARM2) and a water quality model (WASP3) for the study of eutrophication problem in Te-Chi Reservoir in Taiwan is presented. The models were first calibrated and validated with field temperature and water quality data. The combined models were then used to characterize the temperature distribution, seasonal overturning phenomena, and the variations of chlorophyll-a, organic nitrogen, ammonia nitrogen, nitrate nitrogen, organic phosphorus, inorganic phosphorus, and dissolved oxygen in the reservoir. It was shown that the limiting factor for eutrophication in Te-Chi Reservoir is phosphorus, and that better control of phosphorus loading into the reservoir is the crucial step toward improving the water quality of Te-Chi Reservoir.

Water SA ◽  
2019 ◽  
Vol 45 (1 January) ◽  
Author(s):  
Adams JB ◽  
L Pretorius ◽  
GC Snow

Water quality characteristics of the heavily urbanised and industrialised Swartkops River and Estuary in the Eastern Cape have been the focus of several studies since the 1970s. Overloaded and poorly maintained wastewater treatment works (WWTWs), polluted stormwater runoff and solid waste have all contributed to the deterioration in the water quality of the river and estuary. The objective of this study was to determine the current water quality status of the Swartkops Estuary, by investigating spatial and temporal variability in physico-chemical parameters and phytoplankton biomass and where possiblerelate this to historical water quality data. The present study found evidence suggesting that water is not flushed as efficiently from the upper reaches of the estuary as was previously recorded. Reduced vertical mixing results in strong stratification and persistent eutrophic conditions with phytoplankton blooms (> 20 μg chl a·L−1), extending from the middle reaches to the tidal head of the estuary. The Motherwell Canal was and still is a major source of nitrogen (particularly ammonium) to the estuary, but the Swartkops River is the primary source of phosphorus with excessive inputs from the cumulative effectof three WWTWs upstream. An analysis of historical water quality data in the Swartkops Estuary (1995 to 2013) shows that all recorded dissolved inorganic phosphorus measurements were classified as hypertrophic (> 0.1 mg P·L−1), whereas 41% of dissolved inorganic nitrogen measurements were either mesotrophic or eutrophic. If nutrient removal methods at the three WWTWs were improved and urban runoff into the Motherwell Canal better managed, it is likely that persistent phytoplankton blooms and health risks associated with eutrophication could be reduced.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 189
Author(s):  
Geovanni Teran-Velasquez ◽  
Björn Helm ◽  
Peter Krebs

The fluvial nitrogen dynamics at locations around weirs are still rarely studied in detail. Eulerian data, often used by conventional river monitoring and modelling approaches, lags the spatial resolution for an unambiguous representation. With the aim to address this knowledge gap, the present study applies a coupled 1D hydrodynamic–water quality model to a 26.9 km stretch of an upland river. Tailored simulations were performed for river sections with water retention and free-flow conditions to quantify the weirs’ influences on nitrogen dynamics. The water quality data were sampled with Eulerian and Lagrangian strategies. Despite the limitations in terms of required spatial discretization and simulation time, refined model calibrations with high spatiotemporal resolution corroborated the high ammonification rates (0.015 d−1) on river sections without weirs and high nitrification rates (0.17 d−1 ammonium to nitrate, 0.78 d−1 nitrate to nitrite) on river sections with weirs. Additionally, using estimations of denitrification based on typical values for riverbed sediment as a reference, we could demonstrate that in our case study, weirs can improve denitrification substantially. The produced backwater lengths can induce a means of additional nitrogen removal of 0.2-ton d−1 (10.9%) during warm and low-flow periods.


2015 ◽  
Vol 16 (1) ◽  
pp. 52-60 ◽  
Author(s):  
Limin Hou ◽  
Qiang Yue ◽  
Xiangzheng Hu ◽  
Tong Wang ◽  
Liusuo Wang ◽  
...  

The water environmental carrying capacity (WECC) of a city can demonstrate a balance between the level of exploitation of the local water resources and the population growth and concomitant socio-economic development. To begin with, the definition of WECC was elaborated. Combined with hydraulic, hydrologic and water quality data, a one-dimensional water quality model was subsequently applied to simulate the water pollutants (chemical oxygen demand (COD)) in Tieling City. Then, a multi-objective model was applied to explore WECC. Economy, demography, and contaminant were selected as goals, taking into account the constraints of macroeconomic aggregates, water supply, water quality, and population. The results showed WECC could nearly carry all planned gross domestic product (GDP), population in the planning years 2015, 2020, and 2025 with the maximum COD of 30,681.7 t, but not for the condition of maximum COD of 15,709.0 t. That is, COD overload would occur if GDP and population develop as planned. Some measures must be taken to improve WECC in Tieling City, which are valuable for supporting the adjustment and planning for social-economic development.


Author(s):  
Anant Patel ◽  
Karishma Chitnis

Abstract Rivers are critical to human life because they are strategically significant in the world, providing primary water supplies for various purposes. Rivers are the prime importance of any country as most of the cities are settled near the river. Due to developmental activities and increase in population, it will results into huge waste generation. Surface water quality is affected because of increasing urbanization and industrialization. The aim of this research is to examine the effect of climate change and industrialization on the water quality of the Sabarmati river using a mathematical model. For this study four important town along the lower Sabarmati River have been considered and water quality data was considered from 2005 to 2015. In this study different water quality parameters were considered to derive water quality model. Results shows the water quality in downstream after Ahmedabad city is worst compare to the other location where the Maximum WQI is 0.71 at Rasikapur and average WQI is 0.50 for the same location for last 15 year. It has been observed that effect of monsoon and also by comparing time scale water quality model role of regulations for industrialization also plays important role in quality of Sabarmati river.


2015 ◽  
Vol 42 (11) ◽  
pp. 901-909 ◽  
Author(s):  
Jianhua Jiang ◽  
Jerry Vandenberg ◽  
Ian Halket ◽  
Kasey Clipperton ◽  
Richard J. Kavanagh ◽  
...  

Surface mining in the oil sands region of Alberta, Canada, often requires that mining operators drain lakes or divert streams to access the underlying ore. “Compensation lakes” can be constructed to create new fish habitat to offset the loss of fish habitat due to mining activity and to satisfy conditions under a project’s Fisheries Act Authorization. The design of these lakes requires prediction of future water temperature and dissolved oxygen levels to determine the suitability of the new habitat for fish. These predictions are made using a calibrated hydrodynamic and water quality model. Until recently, there were not any built compensation lakes in the region with enough measured water quality data that could be used to calibrate such a model. This paper uses measured data from Horizon Lake, a recently built compensation lake, to calibrate Generalized Environmental Modeling System of Surfacewaters (GEMSS), a three-dimensional hydrodynamic and water quality model, used to model the lake. Horizon Lake was built in 2008 by Canadian Natural Resources Ltd. and water quality in the lake has been monitored for the last seven years. The results of the model calibration to observed water temperature and dissolved oxygen provide rates and coefficients, notably sediment oxygen demand, that can be used to improve model applications to other planned compensation lakes.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4451
Author(s):  
Lei Cheng ◽  
Xiyue Tan ◽  
Dong Yao ◽  
Wenxia Xu ◽  
Huaiyu Wu ◽  
...  

In recent years, fishery has developed rapidly. For the vital interests of the majority of fishermen, this paper makes full use of Internet of Things and air–water amphibious UAV technology to provide an integrated system that can meet the requirements of fishery water quality monitoring and prediction evaluation. To monitor target water quality in real time, the water quality monitoring of the system is mainly completed by a six-rotor floating UAV that carries water quality sensors. The GPRS module is then used to realize remote data transmission. The prediction of water quality transmission data is mainly realized by the algorithm of time series comprehensive analysis. The evaluation rules are determined according to the water quality evaluation standards to evaluate the predicted water quality data. Finally, the feasibility of the system is proved through experiments. The results show that the system can effectively evaluate fishery water quality under different weather conditions. The prediction accuracy of the pH, dissolved oxygen content, and ammonia nitrogen content of fishery water quality can reach 99%, 98%, and 99% on sunny days, and reach 92%, 98%, and 91% on rainy days.


2012 ◽  
Vol 15 (4) ◽  
pp. 1061-1072 ◽  
Author(s):  
Chen Zhang ◽  
Xueping Gao ◽  
Liyi Wang ◽  
Yuanyuan Chen

This study presents the Yuqiao Reservoir Water Quality Model (YRWQM), a three-dimensional hydrodynamic and water quality model of the Yuqiao reservoir, China. The YRWQM was developed under the environmental fluid dynamics code (EFDC) model and was calibrated and verified to hydrodynamic and water quality data, using two sets of observed data from January 1 to December 31, 2006 and from May 1 to October 31, 2007, respectively. The primary hydrodynamic and transport driving forces are inflows/outflows and surface wind stresses. Considering effects of water transfer and wind on the advection-dispersion processes, the model results showed better agreements with observed data in the reservoir. The YRWQM predicted the variations of water quality resulting from agricultural pollution which flowed into the reservoir with floods lasting for 12 days in 2009. The results indicated that the concentrations of chemical oxygen demand and total nitrogen were increased 225 and 314%, respectively. Considering the interactions between chlorophyll-a and nitrogen in the model, the results indicated the reservoir was not a nitrogen-limited environment. We suggest the management should focus on agricultural pollution strategies for the reservoir during the flood period. The YRWQM could be a useful tool for water sources management in the reservoir.


2021 ◽  
Vol 276 ◽  
pp. 01026
Author(s):  
Lei Sun ◽  
Wei Ma ◽  
Jing-ya Ban ◽  
De-xuan Qi

The calculation of water environmental capacity of Puzhehei lake is of great significance for preventing water pollution and protecting water ecological environment of Puzhehei Lake Basin. Based on the lack of hydrological and water quality data in Puzhehei Lake Basin, a large number of basic data were collected through pollution source investigation and water quality monitoring. On this basis, a twodimensional hydrodynamic water quality model of Puzhehei lake was established by using Mike21 model to simulate the migration and diffusion of pollutants into the lake. The current situation of pollution load in Puzhehei lake was analyzed, and the characteristics of water flow, hydrodynamic force and the migration and diffusion law of pollutants in Puzhehei Lake were analyzed. The results show that: ①the annual loads of COD, TN, TP and NH3-N in puzhehai Lake in 2018 are 4090.0t, 401.3t, 34.4t and 122.6t; ②Puzhehei lake is mainly non-point source pollution, and the difference of water environmental capacity between non rainy season and rainy season is very significant.


2009 ◽  
Vol 59 (11) ◽  
pp. 2219-2226 ◽  
Author(s):  
Kyung Hwa Cho ◽  
Yongeun Park ◽  
Joo-Hyon Kang ◽  
Seo Jin Ki ◽  
Sungmin Cha ◽  
...  

The Yeongsan (YS) Reservoir is an estuarine reservoir which provides surrounding areas with public goods, such as water supply for agricultural and industrial areas and flood control. Beneficial uses of the YS Reservoir, however, are recently threatened by enriched non-point and point source inputs. A series of multivariate statistical approaches including principal component analysis (PCA) were applied to extract significant characteristics contained in a large suite of water quality data (18 variables monthly recorded for 5 years); thereby to provide the important phenomenal information for establishing effective water resource management plans for the YS Reservoir. The PCA results identified the most important five principal components (PCs), explaining 71% of total variance of the original data set. The five PCs were interpreted as hydro-meteorological effect, nitrogen loading, phosphorus loading, primary production of phytoplankton, and fecal indicator bacteria (FIB) loading. Furthermore, hydro-meteorological effect and nitrogen loading could be characterized by a yearly periodicity whereas FIB loading showed an increasing trend with respect to time. The study results presented here might be useful to establish preliminary strategies for abating water quality degradation in the YS Reservoir.


2018 ◽  
Vol 54 (1) ◽  
pp. 34-46
Author(s):  
Navid Dolatabadi Farahani ◽  
Hamid Taheri Shahraiyni ◽  
Reza Sheikhi

Abstract In this study, the water quality of the Bahmanshir River and its water channels where Choebdeh Shrimp Farms (the largest shrimp culture complex in Iran) are located were simulated using MIKE11 software. First, an integrated hydraulic and salinity model of the river and its water channels was developed. Then, Manning and dispersion coefficients of the river were calibrated and validated. The most important parameters in the water quality model were determined by sensitivity analysis and these parameters were calibrated using in situ measured water quality data. The errors of salinity, temperature, nitrate, ammonia and dissolved oxygen (DO) models in the verification step were 7.9, 1.2, 0.34, 0.79 and 12%, respectively. Then, two scenarios were applied to the river and the effects of these scenarios on the water quality of the river and its channels were evaluated. The results demonstrated that the site selection of the shrimp culture complex had been performed well because different scenarios could not affect the water quality in the channels. Finally, the water quality in the channels was compared with the standard values of shrimp survival parameters. All of the parameters in the channels were in the range of standard values except DO, which was slightly under the standard value.


Sign in / Sign up

Export Citation Format

Share Document