scholarly journals Water quality modeling for determination of suitability of water for shrimp farming in tidal rivers

2018 ◽  
Vol 54 (1) ◽  
pp. 34-46
Author(s):  
Navid Dolatabadi Farahani ◽  
Hamid Taheri Shahraiyni ◽  
Reza Sheikhi

Abstract In this study, the water quality of the Bahmanshir River and its water channels where Choebdeh Shrimp Farms (the largest shrimp culture complex in Iran) are located were simulated using MIKE11 software. First, an integrated hydraulic and salinity model of the river and its water channels was developed. Then, Manning and dispersion coefficients of the river were calibrated and validated. The most important parameters in the water quality model were determined by sensitivity analysis and these parameters were calibrated using in situ measured water quality data. The errors of salinity, temperature, nitrate, ammonia and dissolved oxygen (DO) models in the verification step were 7.9, 1.2, 0.34, 0.79 and 12%, respectively. Then, two scenarios were applied to the river and the effects of these scenarios on the water quality of the river and its channels were evaluated. The results demonstrated that the site selection of the shrimp culture complex had been performed well because different scenarios could not affect the water quality in the channels. Finally, the water quality in the channels was compared with the standard values of shrimp survival parameters. All of the parameters in the channels were in the range of standard values except DO, which was slightly under the standard value.

Author(s):  
Anant Patel ◽  
Karishma Chitnis

Abstract Rivers are critical to human life because they are strategically significant in the world, providing primary water supplies for various purposes. Rivers are the prime importance of any country as most of the cities are settled near the river. Due to developmental activities and increase in population, it will results into huge waste generation. Surface water quality is affected because of increasing urbanization and industrialization. The aim of this research is to examine the effect of climate change and industrialization on the water quality of the Sabarmati river using a mathematical model. For this study four important town along the lower Sabarmati River have been considered and water quality data was considered from 2005 to 2015. In this study different water quality parameters were considered to derive water quality model. Results shows the water quality in downstream after Ahmedabad city is worst compare to the other location where the Maximum WQI is 0.71 at Rasikapur and average WQI is 0.50 for the same location for last 15 year. It has been observed that effect of monsoon and also by comparing time scale water quality model role of regulations for industrialization also plays important role in quality of Sabarmati river.


2013 ◽  
Vol 17 (2) ◽  
pp. 150-160 ◽  
Author(s):  
Caterina Scaramelli

This paper takes water quality as an ethnographic subject. It looks at how water quality monitors in Boston make sense of the quality of water through mundane engagement with three non-human beings who they encounter during their monitoring activities: herring, bacteria and water lily. Each of these organisms suggests a different understanding of water quality for the monitors and poses a dilemma. Water quality monitors who contribute to the production of water quality data come to know water quality as through direct interactions with these beings, mediated by both sensorial experience and laboratory data. These experiences, at the same time, confuse and redraw relationships between science, water flows, non-human vitality, including that of invasive species, and people.


2003 ◽  
Vol 7 (5) ◽  
pp. 722-743 ◽  
Author(s):  
H. P. Jarvie ◽  
C. Neal ◽  
P. J. A. Withers ◽  
A. Robinson ◽  
N. Salter

Abstract. Water quality data, collected by the Environment Agency in England and Wales over 10 years (1991 – 2000) were used to examine the spatial distribution of nutrient pollution risk and for assessing broad-scale spatial and temporal variability in nutrient fluxes across the Wye catchment. Nutrient water quality across the upper and middle Wye catchment, and along the main River Wye, is generally very good. However, the main areas of concern lie in the small tributaries in the south and east of the catchment, which have lower dilution capacity and high agricultural and effluent inputs, and where mean Total Reactive Phosphorus (TRP) in some cases exceed 1 mg-P l-1. Indeed, mass load calculations have demonstrated that the lowland south and east portion of the catchment contributes more than 85% of the whole-catchment TRP and more than 78% of nitrate (NO3‾) loads. Ratios of NO3‾:Ca were used to fingerprint different water-types across the catchment, linked to weathering and agricultural activity. The Wye catchment has been subject to two major sets of perturbations during the study period: (i) climatic fluctuations, with a drought during 1995-6, followed by a subsequent drought-break in 1997/8, and extreme high river flows in the autumn/winter of 2000/2001, and (ii) introduction of tertiary P-treatment at major sewage treatment works in the catchment. The implications of these perturbations for the nutrient water quality of the Wye catchment are discussed. Recommendations are made for more targeted monitoring to directly assess diffuse source nutrient contributions. Keywords: nutrients, phosphate, phosphorus, nitrate, nitrogen, river, Wye, PSYCHIC, Defra


2017 ◽  
Vol 14 (3) ◽  
pp. 251
Author(s):  
Rita Yulianti ◽  
Emi Sukiyah ◽  
Nana Sulaksana

Daerah penelitian terletak di desa Muaro Limun, Kecamatan Limun Kabupaten Sarolangun Provinsi Jambi. Sungai limun, salah satu sungai besar di daerah kabupaten sarolangun yang dimanfaatkan oleh mayarakat sekitarnya sebagai sumber penghidupan. Penelitian bertujuan untuk mengetahui pengaruh kegiatan penambangan terhadap kualitas air sungai Batang Limun, dan perubahan sifat fisik dan  kimia yang diakibatkan   kegiatan penambangan.Metode yang digunakan adalah  metode grab sampel, serta stream sedimen untuk dianalis di laboratorium. Sejumlah sampel diambil di beberapa lokasi Penambangan Emas berdasarkan Aliran Sub-DAS dan dibandingkan dengan beberapa sampel lain yang diambil pada lokasi yang belum terkontaminasi oleh kegiatan penambangan. Analisis kualitas air mengacu pada  SMEWWke 22 tahun 2012 dan standar baku mutu air kelas II dalam PP No 82 yang dikeluarkan oleh Menteri Kesehatan No. 492/Menkes/Per/IV/2010. Diketahui sungai Batang Limun telah mengalami perubahan karakteristik fisika dan kimia. Dari grafik  kosentrasi kekeruhan, pH, TSS, TDS  Cu, Pb, Zn, Mn, Hg terlihat bahwa penambang emas tanpa izin (PETI) dengan cara amalgamasi yang menyebabkan terjadinya penurunan kualitas air sungai. Sejak tahun 2009 sampai tahun 2015  sungai Limun dan sekitarnya terus mengalami penurunan kualitas air. Penurunan kualitas yang cukup tinggi terjadi  yaitu peningkatan nilai Rata-rata konsentrasi merkuri pada sungai Batang Limun dari 0,18ppb (0,00018 mg/l)  menjadi 0,3ppb (0,0003 mg/l), peningkatan tersebut dipengaruhi oleh proses kegiatan penambangan dan nilai tersebut masih dibawah standar baku mutu air kelas II  pp nomor 82 tahun 2010.Kata kunci :   Kualitas Air, Sungai Limun,TSS, Merkuri, PETI Limun river is one of the major rivers in the area of Sarolangun, which utilized by the society as a source of livelihood. The aim of study  to analyze the effect of mining activities on  the water quality of Batang Limun River, and the changes of physical and chemical properties of water. The method used are grab  and stream samples to  sediment analyzed in the laboratory. A number of samples were taken at several locations based Flow Gold Mining Sub-watershed and compared to some other samples taken at the location that has not been contaminated by mining activities. Water quality analysis referring to SMEWW, 22nd edition 2012 and refers to Regulation No 82 that issued by Minister of Health No. 492 / Menkes / Per / IV / 2010.The results showed that the Limun river has undergone chemical changes in physical characteristics. These symptoms can be seen from the discoloration of clear water in the river before the mine becomes brownish after mining, based on graphic of muddiness concentration: pH, TSS, TDS Cu, Pb, Zn, Mn, Hg have seen that  the illegal miner which used amalgamation caused deterioration in water quality, data from 2009 to 2015 Limun river and surrounding areas continue to experience a decrease in water quality. The decreasing of water quality showed in the TSS parameter which found in the area is to high based on  the standard of water quality class II pp number 82 of 2010. An increase in the value of average concentrations of mercury in the Batang Limun river before mine 0,18ppb (0.00018 mg / l) into 0,3ppb (0.0003 mg / l) on the river after the mine. The increase was affected by the mining activities and the value is still below the air quality standard Grade II pp numbers 82 years 2010, although the value is still below with the standards quality standard, the mercury levels in water should still be a major concern because if it accumulates continuously in the water levels will increase and will be bad for health. In contrast to the concentration of mercury in sediments that have a higher value is 153 ppb (0,513ppm ) .Key Words :   Water Quality, Limun River, Mercury, Illegal gold mining


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1984 ◽  
Author(s):  
Thanda Thatoe Nwe Win ◽  
Thom Bogaard ◽  
Nick van de Giesen

Newly developed mobile phone applications in combination with citizen science are used in different fields of research, such as public health monitoring, environmental monitoring, precipitation monitoring, noise pollution measurement and mapping, earth observation. In this paper, we present a low-cost water quality mobile phone measurement technique combined with sensor and test strips, and reported the weekly-collected data of three years of the Ayeyarwady River system by volunteers at seven locations and compared these results with the measurements collected by the lab technicians. We assessed the quality of the collected data and their reliability based on several indicators, such as data accuracy, consistency, and completeness. In this study, six local governmental staffs and one middle school teacher collected baseline water quality data with high temporal and spatial resolution. The quality of the data collected by volunteers was comparable to the data of the experienced lab technicians for sensor-based measurement of electrical conductivity and transparency. However, the lower accuracy (higher uncertainty range) of the indicator strips made them less useful in the Ayeyarwady with its relatively small water quality variations. We showed that participatory water quality monitoring in Myanmar can be a serious alternative for a more classical water sampling and lab analysis-based monitoring network, particularly as it results in much higher spatial and temporal resolution of water quality information against the very modest investment and running costs. This approach can help solving the invisible water crisis of unknown water quality (changes) in river and lake systems all over the world.


Water SA ◽  
2019 ◽  
Vol 45 (1 January) ◽  
Author(s):  
Adams JB ◽  
L Pretorius ◽  
GC Snow

Water quality characteristics of the heavily urbanised and industrialised Swartkops River and Estuary in the Eastern Cape have been the focus of several studies since the 1970s. Overloaded and poorly maintained wastewater treatment works (WWTWs), polluted stormwater runoff and solid waste have all contributed to the deterioration in the water quality of the river and estuary. The objective of this study was to determine the current water quality status of the Swartkops Estuary, by investigating spatial and temporal variability in physico-chemical parameters and phytoplankton biomass and where possiblerelate this to historical water quality data. The present study found evidence suggesting that water is not flushed as efficiently from the upper reaches of the estuary as was previously recorded. Reduced vertical mixing results in strong stratification and persistent eutrophic conditions with phytoplankton blooms (> 20 μg chl a·L−1), extending from the middle reaches to the tidal head of the estuary. The Motherwell Canal was and still is a major source of nitrogen (particularly ammonium) to the estuary, but the Swartkops River is the primary source of phosphorus with excessive inputs from the cumulative effectof three WWTWs upstream. An analysis of historical water quality data in the Swartkops Estuary (1995 to 2013) shows that all recorded dissolved inorganic phosphorus measurements were classified as hypertrophic (> 0.1 mg P·L−1), whereas 41% of dissolved inorganic nitrogen measurements were either mesotrophic or eutrophic. If nutrient removal methods at the three WWTWs were improved and urban runoff into the Motherwell Canal better managed, it is likely that persistent phytoplankton blooms and health risks associated with eutrophication could be reduced.


2011 ◽  
Vol 347-353 ◽  
pp. 781-785
Author(s):  
Qun Cao ◽  
Bing Xiang Liu ◽  
Xiang Chen

According to the nonlinearity and uncertainty of the water quality data samples, a forecasting model based on Simulated Annealing Genetic Algorithm(SAGA)and least squares support vector machines(LS-SVM) is proposed. Through adaptively optimizing the model parameters of LS-SVM by SAGA, we can apply the model to forecast water quality of Poyang Lake. The experimental results indicate that compared to the typical LS-SVM,the model is very practical and with higher precision.


2018 ◽  
Author(s):  
Martina Botter ◽  
Paolo Burlando ◽  
Simone Fatichi

Abstract. The hydrological and biogeochemical response of rivers carries information about solute sources, pathways, and transformations in the catchment. We investigate long-term water quality data of eleven Swiss catchments with the objective to discern the influence of catchment characteristics and anthropogenic activities on delivery of solutes in stream water. Magnitude, trends and seasonality of water quality samplings of different solutes are evaluated and compared across catchments. Subsequently, the empirical dependence between concentration and discharge is used to classify different solute behaviors. Although the influence of catchment geology, morphology and size is sometime visible on in-stream solute concentrations, anthropogenic impacts are much more evident. Solute variability is generally smaller than discharge variability. The majority of solutes shows dilution with increasing discharge, especially geogenic species, while sediment-related solutes (e.g. Total Phosphorous and Organic Carbon species) show higher concentrations with increasing discharge. Both natural and anthropogenic factors impact the biogeochemical response of streams and, while the majority of solutes show identifiable behaviors in individual catchments, only a minority of behaviors can be generalized across catchments that exhibit different natural, climatic and anthropogenic features.


Author(s):  
Shefaliben Sureshbhai Patel ◽  
Susmita Sahoo

The seasonal investigation about the water quality from Damanganga river estuary on two habitats downstream and upstream was carried out from January to December 2019 containing three major seasons: winter, summer and monsoon. For this monitoring activity total 29 parameters (24 physico-chemical parameters and 5 heavy metals) were analyzed. Multivariate analyses suggested inter dependency among these studied parameters. Water Quality Index is computed based on the major fluctuated and affected parameters. The calculated values of WQI for all three seasons ranged from 122.84 to 173.82 which suggested poor water quality of the water body. WQI values of the investigation area proposed that the estuarine water quality is deteriorated due to high value of presented heavy metals (Aluminum, Iron, Manganese, Boron and Zinc), Chloride, Ammonium and Sulfate in water sample. In this case, the downstream station is having accessional pollutant contaminations while the upstream station is having diminutive pollutant contaminants. Temporally, the dominant frailty found during the winter followed by summer and monsoon. This study field exhibited poor quality of water; the reason behind this might be the impressive surrounding industrial zone as well as other anthropogenic activities. There is quite normal probability distribution expressed by the represented water quality data at the both habitats. The Bray-Curtis cluster analysis shows different percentage similarity level between the water quality parameters.  


Author(s):  
S. I. Ehiorobo ◽  
A. E. Ogbeibu

The water quality of the Okomu Wetland was evaluated using the Water Quality Index (WQI) technique which provides a number that expresses overall water quality of a water body or water sample at a particular time. Sampling of physicochemical parameters spanned two years covering the wet and dry seasons and the water quality data were obtained from 10 sampling locations; Ponds 36, 52, 54, 61, 64, 90, 94, Arhakhuan Stream, Okomu River (Agekpukpu) and Okomu River (Iron bridge) all within the Okomu National Park. Parameters such as Total Dissolved Solids (TDS), Turbidity, pH, Electrical conductivity (EC), Chlorine (Cl), Nitrate (NO3), Sulphate (SO4), Sodium (Na), Magnesium (Mg), (Iron) Fe, Chromium (Cr), Zinc (Zn), Copper (Cu), Manganese (Mn), Lead (Pb), and Nikel (Ni) were used to compute WQI and the values obtained for the wetland ranged between 34.36 and 167.28. The Index shows that pond 36, 52 and 54 are unfit for drinking with values between 103.86 and 167.28; ponds 61 and 64 are of the very poor quality category with WQI values of 95.19 and 92.44 respectively, Pond 90, pond 94, Arhakhuan Stream and Okomu River (Agekpukpu) are of poor quality and WQI values between and 53.58 and 73.15. Whereas, the Okomu River (Iron bridge) is within the good water quality (34.36) category. The Okomu River by Iron bridge is of good quality rating while other sampled points were of poor, very poor or unfit for drinking though these water bodies are mostly free from anthropogenic activities because of the conservative status of the study area. A major source of pollution within the wetland is surface runoff. The water quality of the wetland may not be suitable for man’s consumption especially pond water which are majorly impacted by runoff, yet very important for the survival and sustenance of the forest animals and plants. The water quality index (WQI) interprets physicochemical characteristics of water by providing a value which expresses the overall water quality and thus, reveals possible pollution problems of a water body. It turns complex water quality data into information that is easily understandable and usable by scientists, researchers and the general public.


Sign in / Sign up

Export Citation Format

Share Document