Distribution of heavy metals in seawater, sediment and biota of Jinhae Bay, Korea

1994 ◽  
Vol 30 (10) ◽  
pp. 173-177 ◽  
Author(s):  
Lee Chan-Won ◽  
Kwon Young-Tack

Over the past two decades, the coastal waters of Jinhae Bay have been extensively used by coastal communities and industries for the disposal of domestic and various industrial wastes, therefore increasing the level of pollutants in coastal waters with a subsequent increase in sediments, especially of heavy metals. Specific objectives of this research are to investigate the distribution of heavy metal concentration in biota, to compare the concentrations with those in sediment and water and to relate the bioconcentration to the different heavy metals in biota obtained from several sites. Sixty one percent of heavy metals was found in particulate form during the high runoff season and 32% during the dry season. The behavior of the particulate metals after flowing in to the enclosed coastal sea is an important factor in heavy metal contamination. Copper, lead and chromium contamination of sediment was revealed at several sites. The bioconcentration factors (BCFs) of zinc, cadmium, copper, nickel, chromium and lead by the mussel (Mytilus edulis) were determined as 2,900, 2,814, 807, 423, 228 and 127 in the decreasing order, respectively. The areas located nearest to highly populated city and industries exhibited mussels with the largest accumulation of copper, lead and chromium.

Author(s):  
Diana FLORESCU ◽  
Andreea IORDACHE ◽  
Claudia SANDRU ◽  
Elena HORJ ◽  
Roxana IONETE ◽  
...  

As a result of accidental spills or leaks, industrial wastes may enter in soil and in streams. Some of the contaminants may not be completely removed by treatment processes; therefore, they could become a problem for these sources. The use of synthetic products (e.g. pesticides, paints, batteries, industrial waste, and land application of industrial or domestic sludge) can result in heavy metal contamination of soils.


2020 ◽  
Vol 12 (21) ◽  
pp. 9056 ◽  
Author(s):  
Farheen Nazli ◽  
Adnan Mustafa ◽  
Maqshoof Ahmad ◽  
Azhar Hussain ◽  
Moazzam Jamil ◽  
...  

Water scarcity and high input costs have compelled farmers to use untreated wastewater and industrial effluents to increase profitability of their farms. Normally, these effluents improve crop productivity by serving as carbon source for microbes, providing nutrients to plants and microbes, and improving soil physicochemical and biological properties. They, however, may also contain significant concentrations of potential heavy metals, the main inorganic pollutants affecting plant systems, in addition to soil deterioration. The continuous use of untreated industrial wastes and agrochemicals may lead to accumulation of phytotoxic concentration of heavy metals in soils. Phytotoxic concentration of heavy metals in soils has been reported in Pakistan along the road sides and around metropolitan areas, which may cause its higher accumulation in edible plant parts. A number of bacterial that can induce heavy metal tolerance in plants due to their ability to produce phytohormones strains have been reported. Inoculation of crop plants with these microbes can help to improve their growth and productivity under normal, as well as stressed, conditions. This review reports the recent developments in heavy metal pollution as one of the major inorganic sources, the response of plants to these contaminants, and heavy metal stress mitigation strategies. We have also summarized the exogenous application of phytohormones and, more importantly, the use of phytohormone-producing, heavy metal-tolerant rhizobacteria as one of the recent tools to deal with heavy metal contamination and improvement in productivity of agricultural systems.


2018 ◽  
Vol 7 (1) ◽  
pp. 110-115
Author(s):  
Galina Yurievna Samoilenko ◽  
Evgeniy Aleksandrovich Bondarevich ◽  
Natalia Nikolaevna Kotsyurzhinskaya ◽  
Igor Anatolyevich Boriskin

The paper presents data on the content of gross and mobile forms of zinc, cadmium, lead and copper in the soils of Chita and its surroundings. The paper contains a comparative analysis of the accumulation (Kn) and movement (KP) coefficients of these microelements in organs ( Potentilla tanacetifolia Willd. ex Schlecht.), relative to their gross content and mobile forms in soils. The authors have revealed that soil samples of the studied sites contain unequal gross amount of heavy metals. In some points (6 and 3) the content of cadmium and zinc exceeded the Mac, that is why such soils have been attributed to heavily polluted. The index of biological activity on mobile forms of heavy metals in all sites significantly exceeded the same index on gross forms. It was found that Potentilla tanacetifolia are accumulators of heavy metal ions. Aboveground bodies accumulate and absorb cadmium and copper especially intensively, thus the content of mobile forms of these metals in the soil is insignificant. Excessive adsorption of trace elements in the phytomass of plants can be connected with surface contamination. According to the content of zinc and lead, the accumulation values in the organs of P. tanacetifolia were characterized by small coefficient values, against the background of their high concentration in the soil.


2021 ◽  
Vol 5 (1) ◽  
pp. 467-471
Author(s):  
U. M. Kankara ◽  
Rabiu Nasiru ◽  
Nuraddeen Nasiru Garba ◽  
Jamila Musa Kankara ◽  
Umar Musa Kankara

One of the major routes of heavy metal exposure to humans is via the consumption of vegetable. The study assessed the contribution of automobile emission on the concentration levels of heavy metals in some of commonly consumed vegetables in Katsina state, Nigeria using Atomic Absorption Spectrometry (AAS). Fresh and dried samples of five (5) commonly consumed vegetables were obtained from Danja-Funtua highway road, 0.5 g of each sample was measured into a clean dried beaker and 10 ml of acidic mixture of HNO3/HClO4 in ratio 2:1 was added to the sample for digestion. The heavy metals concentration in this study ranges from 0.6 – 75.5mg/kg, 0.31 – 1.2mg/kg 278 – 1470mg/kg, 0.4 – 36.3mg/kg and 28 – 65 mg/kg for Pb, Cd, Fe, Ni and Cu respectively. Levels of heavy metals were all found to be above the acceptable limits indicating that inhabitants are at risk of heavy metal contamination


2021 ◽  
Vol 14 (1) ◽  
pp. 161
Author(s):  
Naveed Munir ◽  
Muhammad Jahangeer ◽  
Abdelhakim Bouyahya ◽  
Nasreddine El Omari ◽  
Rokia Ghchime ◽  
...  

Heavy metals play an important role in the homeostasis of living cells. However, these elements induce several adverse environmental effects and toxicities, and therefore seriously affect living cells and organisms. In recent years, some heavy metal pollutants have been reported to cause harmful effects on crop quality, and thus affect both food security and human health. For example, chromium, cadmium, copper, lead, and mercury were detected in natural foods. Evidence suggests that these elements are environmental contaminants in natural foods. Consequently, this review highlights the risks of heavy metal contamination of the soil and food crops, and their impact on human health. The data were retrieved from different databases such as Science Direct, PubMed, Google scholar, and the Directory of Open Access Journals. Results show that vegetable and fruit crops grown in polluted soil accumulate higher levels of heavy metals than crops grown in unpolluted soil. Moreover, heavy metals in water, air, and soil can reduce the benefits of eating fruits and vegetables. A healthy diet requires a rational consumption of foods. Physical, chemical, and biological processes have been developed to reduce heavy metal concentration and bioavailability to reduce heavy metal aggregation in the ecosystem. However, mechanisms by which these heavy metals exhibit their action on human health are not well elucidated. In addition, the positive and negative effects of heavy metals are not very well established, suggesting the need for further investigation.


2018 ◽  
Vol 9 (2) ◽  
pp. 631-643 ◽  
Author(s):  
. Ahyar ◽  
Dietriech G. Bengen ◽  
Yusli Wardiatno

Madura strait receives waste disposal from various activites in the mainland, making it vulnerable to contamination of harmful pollutants. Some of the harmful pollutants are heavy metal Pb and Cd. The high concentration Cd and Pb give negative impacts to the biota including bivalves. This study was conducted to assess the distribution of heavy metals Pb and Cd in the waters and their accumulation in bivalves Anadara nodifera, Meretrix lyrata, and Solen lamarckii in coastal waters of the West Madura Strait. Heavy metal analysis refer to APHA 2012 using AAS. The results showed that concentration of Cd and Pb in water were below the quality standards, while in sediment were above the standard (Cd of 7.20 mg/kg and Pb of 62.06 mg/kg). The concentration of Cd in bivalve were different among the species tested A. nodifera of 6.10 mg/kg, M. lyrata of 3.65 mg/kg, and S. lamarckii of 2.74 mg/kg, as well as Pb concentration A. nodifera of 60.10 mg/kg, M. lyrata of 51.48 mg/kg, and S. lamarckii of 45.29 mg/kg). These results indicated that the three shells have exceeded the maximum limit of heavy metal contamination in food (Cd of 1.0 mg/kg and Pb of 1.5 mg/kg). Keywords: bivalve, heavy metal, Madura Strait


2021 ◽  
Vol 25 (3) ◽  
pp. 371-376
Author(s):  
O.O. Akintola ◽  
I.O. Abiola ◽  
E.K. Abodunrin ◽  
O.S. Olokeogun ◽  
A.A. Ekaun ◽  
...  

Heavy metal contamination has become a serious ecological problem due to its toxic effects on soils, plants and human. Experimental study was conducted on dumpsite soil to assess the potential of Ricinus communis to accumulate heavy metals from the soil using bioconcentration (BCF) and tanslocation factors (TF). Heavy metals concentration (mg/kg) in dumpsite and control soil before planting were Mn (50.68- 220.08); Zn(29.01- 135.56); Cu (8.92- 86.88), Pb (5.88-48.86), Ni (3.01-7.99) and Co (1.78-6.88) while the concentration in soils after planting were Mn(29.89- 135.21); Zn (15.11-88.21); Cu (3.89-50.22), pb (3.68-31.56), Ni (1.22-3.56) and Co (0.67-2.68) in Mg/kg. Ricinus communis showed BCF greater than 1 for Ni and Co and less than 1 for Mn, Cu, Zn and Pb while TF is greater than 1 for all the determined heavy metals. The dumpsite soils have higher heavy metal concentration than the control soil. The levels of heavy metals concentration in soils and plants are in the order of Mn> Zn> Cu> Pb> Ni. Significant reduction (P<0.05) was observed in the heavy metal concentrations in the soils before and after planting indicating their accumulation in the plants. Results of this study indicate the accumulation of heavy metals in Ricinus communis plants and its potential for effective removal of Cu, Zn, Pb, Ni, Co and Mn from the dumpsite soils. Keywords: Heavy metal accumulation, Ricinus communis, Dumpsite soil, Translocation factor, Remediation


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 699
Author(s):  
Tengku Said Raza’i ◽  
Thamrin Thamrin ◽  
Nofrizal Nofrizal ◽  
Viktor Amrifo ◽  
Hilfi Pardi ◽  
...  

Background: Heavy metals are materials naturally occurring in nature and increase with a rise in human activity. Ex-mining areas and domestic waste from human settlements are sources of heavy metal contamination that enter and pollute water, which then accumulates in various organisms including the Caulerpa racemosa community. The accumulation of heavy metals in C. racemosa has a wide impact on the food chain in aquatic ecosystems and humans because this alga is a consumptive commodity.   Methods: Sampling of C. racemosa was carried out at seven sites on Bintan Island, Indonesia covering the eastern (Teluk Bakau, Beralas Pasir, Malang Rapat), northern (Berakit and Pengudang), western (Sakera), and southern parts (Tg. Siambang). Sampling was carried out during different monsoons, and heavy metals in water and sediment samples were measured to determine the heavy metal concentration. Heavy metals were analyzed by a spectrophotometric method using Atomic Absorption Spectrophotometry.   Results: The results showed that heavy metal concentrations fluctuate according to changes in the wind season, which carry currents and spread pollutants into the water. The concentration of metal in the water is also from anthropogenic activities. The heavy metal content of cadmium (Cd), lead (Pb), copper (Cu), iron (Fe), and zinc (Zn) in C. racemosa is high in locations close to settlements. Meanwhile, in seawater samples, Fe and Zn metals have the highest concentrations compared to others.  Conclusions: Ex-bauxite mines are a source of Fe and Zn metal contamination in the environment, especially at Tg. Siambang. The levels of these heavy metals in the sediment are also high, as surface particle deposits accumulate at the bottom of the sediment. In general, the levels of heavy metals Cd, Pb, Cu, Fe, and Zn increase in the northern monsoon because the dynamics of the water transport greater heavy metal pollution.


1995 ◽  
Vol 22 (6) ◽  
pp. 1185-1197 ◽  
Author(s):  
Ting-Chien Chen ◽  
Edward Macauley ◽  
Andrew Hong

Heavy metal contamination of soil is a common problem at many hazardous waste sites. Chelating extraction of heavy metals has been proposed as a remediation technique for contaminated soils. A useful method was developed, which assessed 190 ligands for their ability in extraction and recovery of target metals, including cadmium, copper, lead, mercury, nickel, and zinc. Chelator performance was evaluated based on equilibrium calculations with an emphasis on the potential of recovering both the metals and chelating agents. Batch equilibration experiments over 24-h periods were performed to test three chelating agents, S-carboxymethyl-cysteine (SCMC), N-2-acetamidoiminodiacetic acid (ADA), and pyridine-2,6-dicarboxylic acid (PDA), which were deemed suitable for the extraction of cadmium, copper, lead, and zinc from soil. All three chelators demonstrated high extraction capability toward their respective target metals across a wide range of pH, metal, and ligand concentrations. In addition, all three chelators exhibited good recovery potential at moderately elevated pH values. The potential of many chelating agents and their effective pH ranges in the remediation of soils contaminated with heavy metals are reported. Key words: heavy metal, soil, contamination, chelation, remediation.


1995 ◽  
Vol 46 (1) ◽  
pp. 145 ◽  
Author(s):  
EG Pereira ◽  
I Moura ◽  
JR Costa ◽  
JD Mahony ◽  
RV Thomann

The water column and the sediment in the S. Domingos Mine area and the associated drainage stream are heavily contaminated by heavy metals. The Chanca Reservoir, into which this stream flows, shows a localized area where the sediment is contaminated by heavy metals, but in general the water column does not show any contamination. Both water column and sediment quality were analysed, including determination of total heavy metal concentration as well as acid volatile sulfide (AVS) and simultaneously extracted metal (SEM). The ratio between SEM and AVS is less then 1 for almost all sampling sites, showing that the Chanca Reservoir appears to be protected in most areas with respect to both sediment and water column toxity.


Sign in / Sign up

Export Citation Format

Share Document