The S. Domingos Mine: A study of heavy metal contamination in the water column and sediments of the Chanca River Basin by discharge from an ancient cupriferous pyrite mine (Portugal)

1995 ◽  
Vol 46 (1) ◽  
pp. 145 ◽  
Author(s):  
EG Pereira ◽  
I Moura ◽  
JR Costa ◽  
JD Mahony ◽  
RV Thomann

The water column and the sediment in the S. Domingos Mine area and the associated drainage stream are heavily contaminated by heavy metals. The Chanca Reservoir, into which this stream flows, shows a localized area where the sediment is contaminated by heavy metals, but in general the water column does not show any contamination. Both water column and sediment quality were analysed, including determination of total heavy metal concentration as well as acid volatile sulfide (AVS) and simultaneously extracted metal (SEM). The ratio between SEM and AVS is less then 1 for almost all sampling sites, showing that the Chanca Reservoir appears to be protected in most areas with respect to both sediment and water column toxity.

1994 ◽  
Vol 30 (10) ◽  
pp. 173-177 ◽  
Author(s):  
Lee Chan-Won ◽  
Kwon Young-Tack

Over the past two decades, the coastal waters of Jinhae Bay have been extensively used by coastal communities and industries for the disposal of domestic and various industrial wastes, therefore increasing the level of pollutants in coastal waters with a subsequent increase in sediments, especially of heavy metals. Specific objectives of this research are to investigate the distribution of heavy metal concentration in biota, to compare the concentrations with those in sediment and water and to relate the bioconcentration to the different heavy metals in biota obtained from several sites. Sixty one percent of heavy metals was found in particulate form during the high runoff season and 32% during the dry season. The behavior of the particulate metals after flowing in to the enclosed coastal sea is an important factor in heavy metal contamination. Copper, lead and chromium contamination of sediment was revealed at several sites. The bioconcentration factors (BCFs) of zinc, cadmium, copper, nickel, chromium and lead by the mussel (Mytilus edulis) were determined as 2,900, 2,814, 807, 423, 228 and 127 in the decreasing order, respectively. The areas located nearest to highly populated city and industries exhibited mussels with the largest accumulation of copper, lead and chromium.


2018 ◽  
Vol 3 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Mohammad Kazem Souri ◽  
Neda Alipanahi ◽  
Mansoure Hatamian ◽  
Mohammad Ahmadi ◽  
Tsehaye Tesfamariam

Abstract Heavy metal accumulation in vegetable tissues often poses a great risk for human health. In the present study, accumulation of heavy metal in green leafy vegetable crops of coriander, garden cress, lettuce and spinach were evaluated under waste water irrigation in fields located in Kahrizak, on the southern edge of the metropolitan city of Tehran, Iran. Atomic absorption spectrophotometery was used for determination of heavy metal concentrations in leaf tissue. The results showed that heavy metal concentrations in soil and irrigation water were significantly high than allowable levels. Analysis of plant leaf tissue showed that spinach and garden cress accumulated higher concentrations of heavy metals compared to coriander and lettuce plants. Central leaves of lettuce showed the lowest heavy metal concentration compared to outer leaves or leaves of other vegetable crops, and can be the safer product for fresh consumption. The results indicate that the vegetables produced in the region are not suitable for fresh consumption and the agricultural activities should change towards ornamental or industrial crops production.


Author(s):  
Nachana’a Timothy

Heavy metal concentration in roadside soil and plants are increasingly becoming of health concern. This work determined the concentration of selected heavy metals (Cd, Pb, Zn, Cr, Fe, Mg, Mn, Co, Ni and Cu) in roadside soils and plants samples from selected sites (Plaifu, Shiwa, Fadama-rake and Damdrai) along major road in Hong. Soil samples were taken 10 m, 20 m and 30 m away from the edge of the road at the  depth of 0-10 cm, 10-20 cm and 20-30 cm. Plant samples were randomly collected within the vicinity where the soil samples were taken and were analysed using Atomic Absorption Spectrophotometer. The result revealed the trend in soil heavy metal concentration was Fe > Mn > Mg > Pb > Zn > Ni > Co > Cu > Cr > Cd and for plant the trend was Fe > Mn > Mg > Zn > Pb > Ni > Cu > Cd > Co > Cr. The concentrations decreased with increasing distance away from the edge of the road as well as with depth at which the soil sample were taken. The transfer factor showed that the concentration of Zn, Mn, Cu and Mg were greater than 1, which shows that plant were enriched by Zn, Mn, Cu and Mg from the soil. Mg and Cd equal to 1 at Plaifu and Damdrai. Most of the values of TF at the study area super pass 0.5, which implies that generally, the ability of bioaccumulation of these heavy metals in examined plants were relatively high.


2014 ◽  
Vol 1060 ◽  
pp. 199-202
Author(s):  
Chutima Limmatvapirat ◽  
Sontaya Limmatvapirat ◽  
Juree Charoenteeraboon ◽  
Chantana Wessapan ◽  
Anchalee Kumsum ◽  
...  

Seven groups of herbal drinks including gum karaya, Indian gooseberry, Noni Indian mulberry, cat's whiskers, prickly-leaved elephant's foot, black galingale, and Ling zhi mushroom contain a variety of bioactive compounds such as polysaccharides, terpenes, saponins, and flavonoids. The extracts of these plants have several biological activities such as analgesic, anti-inflammatory, antibacterial, antioxidant and chemoprotective activities that can promote health. The popular uses of herbal drinks in Thailand raise the question about safety of their products, especially for heavy metal contamination. The concentrations of heavy metals such as As, Pb, Cu, Zn, Fe, and Cd in twenty one samples from seven groups of herbal drinks were determined by ICP-MS. None of herbal drinks passed the permissible limits under the Notification of Ministry of Public Health (No. 214) B.E. 2543 (2000) Re: Beverages in Sealed Container by the virtue of the Food Act B.E. 2522 (1979), Thailand. Moreover, the concentrations of Pb and Zn in all analyzed samples were higher than the permissible limits. The concentrations of Fe in almost all analyzed samples as well as the concentrations of As, Cd, and Cu in some analyzed samples were higher than the permissible limits. The levels of heavy metals found in this study raise concerns, not only for the safety of Thai consumers, but also the quality of herbal drinks available in Thailand.


Author(s):  
Md. Matiar Rahman ◽  
Md. Mahedi Hassan

The present study was conducted to figure out the heavy metals (Cd, Co, Cu, Fe, Hg, Mn, Mo, Ni, Pb and Zn) concentrations in water, sediments and fish species from the Rupsha River, Khulna, Bangladesh to spot the heavy metal contamination level. Heavy metals are dangerous because they're non-biodegradable and having an extended half-life period. The heavy metal contamination could also be an excellent concern, especially for aquatic life. The metal concentration within the water sample from the Rupsha River was significantly above the rule values of WHO and USEPA respectively. Moreover, the concentration of metal within the sediments was also greater than the respective probable effect concentrations of the sediment quality guidelines. Furthermore, consistent with the fish standards, these studied fish species weren't found to be contaminated by heavy metals. It’s concluded that each of the heavy metals from the whole sample didn't exceed the standard maximum level. This study demonstrated that water of Rupsha River isn't safe for aquatic organisms also like humans in terms of Pb, Cd and Cr contents as accumulated through consumption.


2021 ◽  
Vol 5 (1) ◽  
pp. 467-471
Author(s):  
U. M. Kankara ◽  
Rabiu Nasiru ◽  
Nuraddeen Nasiru Garba ◽  
Jamila Musa Kankara ◽  
Umar Musa Kankara

One of the major routes of heavy metal exposure to humans is via the consumption of vegetable. The study assessed the contribution of automobile emission on the concentration levels of heavy metals in some of commonly consumed vegetables in Katsina state, Nigeria using Atomic Absorption Spectrometry (AAS). Fresh and dried samples of five (5) commonly consumed vegetables were obtained from Danja-Funtua highway road, 0.5 g of each sample was measured into a clean dried beaker and 10 ml of acidic mixture of HNO3/HClO4 in ratio 2:1 was added to the sample for digestion. The heavy metals concentration in this study ranges from 0.6 – 75.5mg/kg, 0.31 – 1.2mg/kg 278 – 1470mg/kg, 0.4 – 36.3mg/kg and 28 – 65 mg/kg for Pb, Cd, Fe, Ni and Cu respectively. Levels of heavy metals were all found to be above the acceptable limits indicating that inhabitants are at risk of heavy metal contamination


2021 ◽  
Vol 14 (1) ◽  
pp. 161
Author(s):  
Naveed Munir ◽  
Muhammad Jahangeer ◽  
Abdelhakim Bouyahya ◽  
Nasreddine El Omari ◽  
Rokia Ghchime ◽  
...  

Heavy metals play an important role in the homeostasis of living cells. However, these elements induce several adverse environmental effects and toxicities, and therefore seriously affect living cells and organisms. In recent years, some heavy metal pollutants have been reported to cause harmful effects on crop quality, and thus affect both food security and human health. For example, chromium, cadmium, copper, lead, and mercury were detected in natural foods. Evidence suggests that these elements are environmental contaminants in natural foods. Consequently, this review highlights the risks of heavy metal contamination of the soil and food crops, and their impact on human health. The data were retrieved from different databases such as Science Direct, PubMed, Google scholar, and the Directory of Open Access Journals. Results show that vegetable and fruit crops grown in polluted soil accumulate higher levels of heavy metals than crops grown in unpolluted soil. Moreover, heavy metals in water, air, and soil can reduce the benefits of eating fruits and vegetables. A healthy diet requires a rational consumption of foods. Physical, chemical, and biological processes have been developed to reduce heavy metal concentration and bioavailability to reduce heavy metal aggregation in the ecosystem. However, mechanisms by which these heavy metals exhibit their action on human health are not well elucidated. In addition, the positive and negative effects of heavy metals are not very well established, suggesting the need for further investigation.


Author(s):  
Suleiman I. Onuruoiza ◽  
Suleiman A. Itopa ◽  
Jwan’an L. Emmanuel ◽  
Adebiyi H. Yetunde ◽  
Aderemi O. Cornelius ◽  
...  

Introduction: Meat is a major source of protein for the urban – population, but it could be susceptible to contamination by heavy metals, heavy metals and anti - nutrients pose a serious threat to human well being due to thier toxicity and chelating activity, this call for the need to determine thier level in meat which is one of our daily food. Objectives: This study is designed to determine the concentrations of heavy metals (Lead, Chromium, Cupper, Cadmium, and Zinc) and anti-nutrients (Phytate, Oxalate and cyanogenic glycoside) in cow meat sold in different locations in Minna, Niger State. Method: A total of 12 beef samples were bought from beef outlet in 4 major markets in Minna namely Bosso Market, Kure Market, Mobil Market, and Tunga Market. The level of the heavy metals were assayed using Atomic Absorbance Spectrophotometry (AAS) while that of anti – nutrients were determined using standard analytical methods. Results: Show that the concentration of Lead is highest across all locations while that of Zinc is the lowest across all locations. The order of the level of heavy metal concentration across the locations are Pb > Cd = Cu >Cr > Zn. Lead (Pb) concentrations across the four markets are 6.340±1.3562µg/g, 6.766±0.3684µg/g, 6.057±1.2097µg/g, 3.716±0.247µg/g respectively, while that of zinc are 0.310±0.0061µg/g, 0.304±0.0023µg/g, 0.298±0.0227µg/g, 0.299±0.0180µg/g respectively. Conclusion: Results from this study indicate that heavy metal toxicity could result from the consumption of cow meat from these study areas.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Irsan . ◽  
Yusthinus T. Male ◽  
Debby A. J. Selanno

Sungai Waelata dan Sungai Anahoni merupakan dua sungai tempat beroperasinya trommel untuk pengolahan material emas Gunung Botak dan Gogrea. Melalui aliran sungai, limbah merkuri hasil pengolahan trommel terangkut dan terbawa ke muara yang pada akhirnya akan mencemari perairan laut Teluk Kayeli. Kerang Polymesoda erosa merupakan salah satu jenis kerang yang sering digunakan dalam pemantauan logam berat merkuri, terutama pada wilayah muara sungai. Penelitian ini bertujuan untuk menganalisis kadar logam berat merkuri(Hg) pada air, sedimen dan kerang Polymesoda erosadi Muara Sungai Waelata dan Sungai Anahoni Kabupaten Buru. Hasil penelitian menunjukan konsentrasilogamberat merkuripada air di Muara Sungai Waelata dan Sungai Anahoni tidak terdeteksi di semua stasiun penelitian dan dibawah baku mutu air laut untuk biota laut berdasarkan Kepmen LH No. 51 Tahun 2004 sebesar 0,001 ppm. Konsentrasilogamberat merkuripada sedimenmemilikikisaranrata­ratasebesar0,134­0,874ppm dan dibawah baku mutu sedimen berdasarkan ANZECC/AMRCANZ (2000) sebesar 1,0 ppm. Konsentrasilogamberat merkuripada kerang Polymesoda erosamemilikikisaranrata­ratasebesar0,123­0,206 ppm dan dibawah Batasan Maksimum Cemaran Logam Berat Dalam Pangan merujuk pada Standar Nasional Indonesia (SNI) No. 7387 Tahun 2009 sebesar 1,0 ppmABSTRACT The Waelata River and the Anahoni River are the two rivers where trommel operates for the processing of gold material from Gunung Botak and Gogrea. By the river, mercury waste from the processing of trommel is transported through estuary which will ultimately pollute the waters of the Kayeli Bay. Polymesoda erosa shells are one type of shellfish that is often used in monitoring heavy metals of mercury, especially in the estuary region. This study aims to analyze the concentration of heavy metal mercury (Hg) in water, sediments and Polymesoda erosa shells in the Waelata River and Anahoni River in Buru Regency. The results showed that the concentration of mercury heavy metals in water in the Waelata River and Anahoni River were not detected at all research stations and were below sea water quality standard for marine biota based on Minister of Environment Decree No. 51 of 2004 which is 0.001 ppm. The concentration of mercury heavy metals in sediments has an average range of 0.1340.887 ppm and is below the sediment quality standard based on ANZECC/AMRCANZ (2000) of 1.0 ppm. The concentration of mercury heavy metals in Polymesoda erosa shells has an average range of 0.1230.206 mg/kg and under the Maximum Limit of Heavy Metal Contamination in Food refers to the Indonesian National Standard (SNI) No. 7387 of 2009 which is 1.0 ppm.


2021 ◽  
Vol 25 (3) ◽  
pp. 371-376
Author(s):  
O.O. Akintola ◽  
I.O. Abiola ◽  
E.K. Abodunrin ◽  
O.S. Olokeogun ◽  
A.A. Ekaun ◽  
...  

Heavy metal contamination has become a serious ecological problem due to its toxic effects on soils, plants and human. Experimental study was conducted on dumpsite soil to assess the potential of Ricinus communis to accumulate heavy metals from the soil using bioconcentration (BCF) and tanslocation factors (TF). Heavy metals concentration (mg/kg) in dumpsite and control soil before planting were Mn (50.68- 220.08); Zn(29.01- 135.56); Cu (8.92- 86.88), Pb (5.88-48.86), Ni (3.01-7.99) and Co (1.78-6.88) while the concentration in soils after planting were Mn(29.89- 135.21); Zn (15.11-88.21); Cu (3.89-50.22), pb (3.68-31.56), Ni (1.22-3.56) and Co (0.67-2.68) in Mg/kg. Ricinus communis showed BCF greater than 1 for Ni and Co and less than 1 for Mn, Cu, Zn and Pb while TF is greater than 1 for all the determined heavy metals. The dumpsite soils have higher heavy metal concentration than the control soil. The levels of heavy metals concentration in soils and plants are in the order of Mn> Zn> Cu> Pb> Ni. Significant reduction (P<0.05) was observed in the heavy metal concentrations in the soils before and after planting indicating their accumulation in the plants. Results of this study indicate the accumulation of heavy metals in Ricinus communis plants and its potential for effective removal of Cu, Zn, Pb, Ni, Co and Mn from the dumpsite soils. Keywords: Heavy metal accumulation, Ricinus communis, Dumpsite soil, Translocation factor, Remediation


Sign in / Sign up

Export Citation Format

Share Document