Pretreatment of azo dyes using ozone

1997 ◽  
Vol 36 (2-3) ◽  
pp. 155-163 ◽  
Author(s):  
S. Liakou ◽  
M. Kornaros ◽  
G. Lyberatos

Wastewaters produced in textile industrial processes contain organic dyes which are not easily amenable to biological treatment. Pretreatment with ozone is a promising method for oxidation of those dyes to more degradable compounds. The aim of this work is to assess the oxidation kinetics of a specific azo dye used in the textile industry, Orange II. Batch experiments were conducted in order to elucidate the oxidation route of the dye. Oxalate, formate and benzenesulfonate are found to be the oxidation intermediate compounds. A mathematical model which describes the dye elimination, the COD and BOD5 variation, the amount of ozone reacted and the time evolution of the intermediate compounds has been developed.

1997 ◽  
Vol 35 (4) ◽  
pp. 279-286 ◽  
Author(s):  
S. Liakou ◽  
S. Pavlou ◽  
G. Lyberatos

Ozone pretreatment studies of wastewater containing a specific azo dye – Orange II - were conducted in order to assess the kinetics of ozone oxidation and to evaluate the effect of ozonation on the biodegradability of the wastewater. Batch experiments were performed at different initial concentrations of the dye, showing that ozone is capable of a rapid disruption of the dye molecule. Moreover, the production of biodegradable compounds is apparent from the evolution of COD and BOD5 measurements. A mathematical model which describes the dye elimination, the COD and BOD5 variation, and the amount of ozone reacted has been developed.


1997 ◽  
Vol 36 (6-7) ◽  
pp. 65-72 ◽  
Author(s):  
Elías Razo-Flores ◽  
Maurice Luijten ◽  
Brian Donlon ◽  
Gatze Lettinga ◽  
Jim Field

Biological treatment of wastewaters discharged by the textile industry could potentially be problematic due to the high toxicity and recalcitrance of the commonly-used azo dye compounds. In the present report, the fate of two azo dyes under methanogenic conditions was studied. Mordant Orange 1 (MO1) and Azodisalicylate (ADS) were completely reduced and decolorised in continuous UASB reactors in the presence of cosubstrates. In the MO1 reactor, both 5-aminosalicylic acid (5-ASA) and 1,4-phenylenediamine were identified as products of azo cleavage. After long adaptation periods, 5-ASA was detected at trace levels, indicating further mineralization. ADS, a pharmaceutical azo dye constructed from two 5-ASA units, was completely mineralized even in the absence of cosubstrate, indicating that the metabolism of 5-ASA could provide the reducing equivalents needed for the azo reduction. Batch experiments confirmed the ADS mineralization. These results demonstrate that some azo dyes could serve as a carbon, energy, and nitrogen source for anaerobic bacteria.


2018 ◽  
Vol 78 (9) ◽  
pp. 1916-1924 ◽  
Author(s):  
Lucie Pokorna-Krayzelova ◽  
Dana Vejmelková ◽  
Lara Selan ◽  
Pavel Jenicek ◽  
Eveline I. P. Volcke ◽  
...  

Abstract Hydrogen sulfide is a toxic and usually undesirable by-product of the anaerobic treatment of sulfate-containing wastewater. It can be removed through microaeration, a simple and cost-effective method involving the application of oxygen-limiting conditions (i.e., dissolved oxygen below 0.1 mg L−1). However, the exact transformation pathways of sulfide under microaerobic conditions are still unclear. In this paper, batch experiments were performed to study biochemical and chemical sulfide oxidation under microaerobic conditions. The biochemical experiments were conducted using a strain of Sulfuricurvum kujiense. Under microaerobic conditions, the biochemical sulfide oxidation rate (in mg S L−1 d−1) was approximately 2.5 times faster than the chemical sulfide oxidation rate. Elemental sulfur was the major end-product of both biochemical and chemical sulfide oxidation. During biochemical sulfide oxidation elemental sulfur was in the form of white flakes, while during chemical sulfide oxidation elemental sulfur created a white suspension. Moreover, a mathematical model describing biochemical and chemical sulfide oxidation was developed and calibrated by the experimental results.


2022 ◽  
Vol 82 ◽  
Author(s):  
E. R. Silva ◽  
E. L. Dall’Oglio ◽  
L. G. Vasconcelos ◽  
E. B. Morais

Abstract Shewanella xiamenensis G5-03 was observed to decolorize the azo dye Congo red in synthetic wastewater. The influence of some factors on the dye decolorization efficiency was evaluated. The optimal decolorization conditions were temperature 30-35 °C, pH 10.0, incubation time 10 h, and static condition. The kinetic of Congo red decolorization fitted to the Michaelis–Menten model (Vmax = 111.11 mg L-1 h-1 and Km = 448.3 mg L-1). The bacterium was also able to degrade benzidine, a product of azo bond breakage of the Congo red, which contributed to reduce the phytotoxicity. The ability of S. xiamenensis G5-03 for simultaneous decolorization and degradation of Congo red shows its potential application for the biological treatment of wastewaters containing azo dyes.


2019 ◽  
Vol 8 (49) ◽  
Author(s):  
Ivette Fuentes ◽  
Robert Ccorahua ◽  
Oscar Tinoco ◽  
Oscar León ◽  
Pablo Ramírez

Here, we report the annotated genome sequences of two Shewanella sp. strains isolated from textile industry wastewater effluent in Peru. Potential genes for encoding enzymes that enable the strain to decolorize and degrade textile azo dyes were detected in both genomes.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Mallikarjun C. Bheemaraddi ◽  
Santosh Patil ◽  
Channappa T. Shivannavar ◽  
Subhashchandra M. Gaddad

A potential bacterial strain GSM2, capable of degrading an azo dye Reactive Violet 5 as a sole source of carbon, was isolated from textile mill effluent from Solapur, India. The 16S rDNA sequence and phenotypic characteristics indicated an isolated organism asParacoccussp. GSM2. This strain exhibited complete decolorization of Reactive Violet 5 (100 mg/L) within 16 h, while maximally it could decolorize 800 mg/L of dye within 38 h with 73% decolorization under static condition. For color removal, the most suitable pH and temperature were pH 6.0–9.0 and 25–40°C, respectively. The isolate was able to decolorize more than 70% of five structurally different azo dyes within 38 h. The isolate is salt tolerant as it can bring out more than 90% decolorization up to a salt concentration of 2% (w/v). UV-Visible absorption spectra before and after decolorization suggested that decolorization was due to biodegradation and was further confirmed by FT-IR spectroscopy. Overall results indicate the effectiveness of the strain GSM2 explored for the treatment of textile industry effluents containing various azo dyes. To our knowledge, this could be the first report on biodegradation of Reactive Violet 5 byParacoccussp. GSM2.


2020 ◽  
Vol 212 ◽  
pp. 01001
Author(s):  
Sergey Belov ◽  
Grigoriy Naumchik

The article discusses the mechanisms of interaction of ozone with aqueous solutions of organic dyes. Two different dyes with different types of chromophore systemwere investigated: azo dye and thiazine dye. A detailed methodology for performing experimental studies makes it possible to accurately dose ozone into the reaction mixture. The data of experimental studies are presented indicating the effectiveness of the use of ozone for the destruction of dyes in aqueous solutions. The specific doses of ozone were established to reduce the color intensity of the studied dye solutions to standard values.


Author(s):  
Aline Silva Cossolin ◽  
Hélen Cristina Oliveira dos Reis ◽  
Ketinny Camargo de Castro ◽  
Bruna Assis Paim dos Santos ◽  
Matheus Zimermann Marques ◽  
...  

Shewanella xiamenensis G5-03 isolated from contaminated landfill soil efficiently decolorized five textile azo dyes under static conditions. One of them, Reactive Red 239 (RR239), was completely decolorized at a pH range of 7 to 11 (at 35°C) within 3-6 h. The bacterium was also efficiently decolorized RR239 in a wide temperature range of 25-40°C (at pH 8). The kinetics of RR239 decolorization by G5-03 fitted to the Michaelis–Menten Model (Km = 443.3 mg L-1, Vmax = 166.7 mg L-1 h-1). The decolorization of RR239 was monitored by UV-Vis and FTIR spectroscopy, which showed significant changes in peak positions when compared to the dye spectrum. Overall, the ability of S. xiamenensis G5-03 to decolorize textile azo dyes in a wide range of temperatures and pH (neutral-alkaline) indicate that this strain is a potential candidate for treating dye-containing effluent.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 495-500 ◽  
Author(s):  
U. Zissi ◽  
G. Lyberatos

Biological oxidation of azo-dyes is important for wastewater treatment. Azo-dyes are synthetic organic colorants that exhibit great structural variety. A large majority of these dyes are released into the environment. The textile industry and dyestuff manufacturing industry are two major sources of released azodyes. In the present study, we focus on the anoxic degradation of a disperse azo-dye, p-aminoazobenzene (pAAB), a simple azo-dye, by a pure culture of Bacillus subtilis, growing on a synthetic medium. Bacillus subtilis is a bacterium capable of using nitrate and/or nitrite as terminal electron acceptor under anoxic conditions. This bacterium lacks the capability for fermentation. The degradation of p-aminoazobenzene by Bacillus subtilis was examined through batch experiments in order to elucidate the mechanism of dye degradation. The results proved that Bacillus subtilis co-metabolizes p-aminoazobenzene under denitrifying conditions, in the presence of glucose as carbon source, producing aniline and p-phenylenediamine as the nitrogen-nitrogen double bond is broken.


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Seong Won Nho ◽  
Xuewen Cui ◽  
Ohgew Kweon ◽  
Jinshan Jin ◽  
Huizhong Chen ◽  
...  

Abstract Purpose There has been an interest in the microbial azo dye degradation as an optional method for the treatment of azo dye-containing wastes. Tattoo ink is an extremely unique azo dye-rich environment, which have never been explored in terms of microorganisms capable of degrading azo dyes. Previously, we isolated 81 phylogenetically diverse bacteria, belonging to 18 genera and 52 species, contaminated in tattoo inks. In this study, we investigated if these bacteria, which can survive in the azo dye-rich environment, have an ability to degrade azo dyes. Methods We conducted a two-step azo dye degradation (or decolorization) assay. In step 1, a high-throughput degradability assay was done for 79 bacterial isolates using Methyl Red and Orange II. In step 2, a further degradation assay was done for 10 selected bacteria with a representative of 11 azo dyes, including 3 commercial tattoo ink azo dyes. Degradation of azo dyes were calculated from measuring optical absorbance of soluble dyes at specific wavelengths. Results The initial high-throughput azo dye assay (step 1) showed that 79 isolates had a complete or partial degradation of azo dyes; > 90% of Methyl Red and Orange II were degraded within 24 h, by 74 and 20 isolates, respectively. A further evaluation of azo dye degradability for 10 selected isolates in step 2 showed that the isolates, belonging to Bacillus, Brevibacillus, Paenibacillus, and Pseudomonas, exhibited an excellent decolorization ability for a wide range of azo dyes. Conclusions This study showed that phylogenetically diverse bacteria, isolated from azo dye-rich tattoo inks, is able to degrade a diverse range of azo dyes, including 3 azo dyes used in commercial tattoo inks. Some of the strains would be good candidates for future studies to provide a systematic understanding of azo dye degradation mechanisms.


Sign in / Sign up

Export Citation Format

Share Document