An assessment of the toxicity of some pesticides and their metabolites affecting a natural aquatic environment using the Microtox™ system

2000 ◽  
Vol 42 (1-2) ◽  
pp. 19-24 ◽  
Author(s):  
I. Amorós ◽  
R. Connon ◽  
H. Garelick ◽  
J.L. Alonso ◽  
J.M. Carrasco

The conservation and preservation of aquatic ecosystems is of utmost importance due to the high diversity and density of species and their complex food network. The evaluation of the potential adverse environmental impact caused by pesticides entering water bodies is an important parameter in aquatic toxicity. The toxicity of the insecticide, Fenitrothion and two of its metabolites, 3-methyl-4 nitrophenol and 3-methyl-4-nitroanisole, and of the herbicides Thiobencarb and Molinate, commonly used in rice fields in Valencia near the protected area of lake Albufera, has been tested by using the Microtox™ system. The 15 min EC50 values obtained with the marine luminescent bacterium Vibrio fischeri showed that the Thiobencarb was the most toxic of the three tested pesticides with an EC50 value of 0.03 mg/l. The EC50 values of the first two steps of the Fenitrothion hydrolysis indicated that while the first metabolite, 3-methyl-4-nitrophenol, was as toxic as its parent compound, a decreased toxicity was observed for the second metabolite, 3-methyl-4-nitroanisole. In order to analyze the toxic effects of pesticides in complex mixtures the EC50 values of Fenitrothion, Molinate and Thiobencarb as pure substances and their mixtures were compared. The impact of the pesticides in the natural ecosystem was also studied and a protective effect of lake water was observed.

1997 ◽  
Vol 161 ◽  
pp. 189-195
Author(s):  
Cesare Guaita ◽  
Roberto Crippa ◽  
Federico Manzini

AbstractA large amount of CO has been detected above many SL9/Jupiter impacts. This gas was never detected before the collision. So, in our opinion, CO was released from a parent compound during the collision. We identify this compound as POM (polyoxymethylene), a formaldehyde (HCHO) polymer that, when suddenly heated, reformes monomeric HCHO. At temperatures higher than 1200°K HCHO cannot exist in molecular form and the most probable result of its decomposition is the formation of CO. At lower temperatures, HCHO can react with NH3 and/or HCN to form high UV-absorbing polymeric material. In our opinion, this kind of material has also to be taken in to account to explain the complex evolution of some SL9 impacts that we observed in CCD images taken with a blue filter.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 77
Author(s):  
Cristina Adochite ◽  
Luminita Andronic

In the last years, nanoparticles such as TiO2, ZnO, NiO, CuO and Fe2O3 were mainly used in wastewater applications. In addition to the positive aspects concerning using nanoparticles in the advanced oxidation process of wastewater containing pollutants, the impact of these nanoparticles on the environment must also be investigated. The toxicity of nanoparticles is generally investigated by the nanomaterials’ effect on green algae, especially on Chlorella vulgaris. In this review, several aspects are reviewed: the Chlorella vulgaris culture monitoring and growth parameters, the effect of different nanoparticles on Chlorella vulgaris, the toxicity of photocatalyst nanoparticles, and the mechanism of photocatalyst during oxidative stress on the photosynthetic mechanism of Chlorella vulgaris. The Bold basal medium (BBM) is generally recognized as an excellent standard cultivation medium for Chlorella vulgaris in the known environmental conditions such as temperature in the range 20–30 °C and light intensity of around 150 μE·m2·s−1 under a 16/8 h light/dark cycle. The nanoparticles synthesis methods influence the particle size, morphology, density, surface area to generate growth inhibition and further algal deaths at the nanoparticle-dependent concentration. Moreover, the results revealed that nanoparticles caused a more potent inhibitory effect on microalgal growth and severely disrupted algal cells’ membranes.


2001 ◽  
Vol 17 (suppl) ◽  
pp. S155-S164 ◽  
Author(s):  
Pedro F. C. Vasconcelos ◽  
Amélia P. A. Travassos da Rosa ◽  
Sueli G. Rodrigues ◽  
Elizabeth S. Travassos da Rosa ◽  
Nicolas Dégallier ◽  
...  

A total of 187 different species of arboviruses and other viruses in vertebrates were identified at the Evandro Chagas Institute (IEC) from 1954 to 1998, among more than 10,000 arbovirus strains isolated from humans, hematophagous insects, and wild and sentinel vertebrates. Despite intensive studies in the Brazilian Amazon region, especially in Pará State, very little is known about most of these viruses, except for information on date, time, source, and method of isolation, as well as their capacity to infect laboratory animals. This paper reviews ecological and epidemiological data and analyzes the impact of vector and host population changes on various viruses as a result of profound changes in the natural environment. Deforestation, mining, dam and highway construction, human colonization, and urbanization were the main manmade environmental changes associated with the emergence and/or reemergence of relevant arboviruses, including some known pathogens for humans.


2014 ◽  
Vol 58 (8) ◽  
pp. 4515-4526 ◽  
Author(s):  
Hong-Tao Xu ◽  
Susan P. Colby-Germinario ◽  
Maureen Oliveira ◽  
Daniel Rajotte ◽  
Richard Bethell ◽  
...  

ABSTRACTA W153L substitution in HIV-1 reverse transcriptase (RT) was recently identified by selection with a novel nucleotide-competing RT inhibitor (NcRTI) termed compound A that is a member of the benzo[4,5]furo[3,2,d]pyrimidin-2-one NcRTI family of drugs. To investigate the impact of W153L, alone or in combination with the clinically relevant RT resistance substitutions K65R (change of Lys to Arg at position 65), M184I, K101E, K103N, E138K, and Y181C, on HIV-1 phenotypic susceptibility, viral replication, and RT enzymatic function, we generated recombinant RT enzymes and viruses containing each of these substitutions or various combinations of them. We found that W153L-containing viruses were impaired in viral replicative capacity and were hypersusceptible to tenofovir (TFV) while retaining susceptibility to most nonnucleoside RT inhibitors. The nucleoside 3TC retained potency against W153L-containing viruses but not when the M184I substitution was also present. W153L was also able to reverse the effects of the K65R substitution on resistance to TFV, and K65R conferred hypersusceptibility to compound A. Biochemical assays demonstrated that W153L alone or in combination with K65R, M184I, K101E, K103N, E138K, and Y181C impaired enzyme processivity and polymerization efficiency but did not diminish RNase H activity, providing mechanistic insights into the low replicative fitness associated with these substitutions. We show that the mechanism of the TFV hypersusceptibility conferred by W153L is mainly due to increased efficiency of TFV-diphosphate incorporation. These results demonstrate that compound A and/or derivatives thereof have the potential to be important antiretroviral agents that may be combined with tenofovir to achieve synergistic results.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2984
Author(s):  
Hyeonju Lee ◽  
Min-Ho Koo ◽  
Byong Wook Cho ◽  
Yong Hwa Oh ◽  
Yongje Kim ◽  
...  

Hydraulic structures have a significant impact on riverine environment, leading to changes in stream–aquifer interactions. In South Korea, 16 weirs were constructed in four major rivers, in 2012, to secure sufficient water resources, and some weirs operated periodically for natural ecosystem recovery from 2017. The changed groundwater flow system due to weir operation affected the groundwater level and quality, which also affected groundwater use. In this study, we analyzed the changes in the groundwater flow system near the Geum River during the Baekje weir operation using Visual MODFLOW Classic. Groundwater data from 34 observational wells were evaluated to analyze the impact of weir operation on stream–aquifer interactions. Accordingly, the groundwater discharge rates increased from 0.23 to 0.45 cm/day following the decrease in river levels owing to weir opening, while the hydrological condition changed from gaining to losing streams following weir closure. The variation in groundwater flow affected the groundwater quality during weir operation, changing the groundwater temperature and electrical conductivity (EC). Our results suggest that stream–aquifer interactions are significantly affected by weir operation, consequently, these repeated phenomena could influence the groundwater quality and groundwater use.


2019 ◽  
Vol 31 (4) ◽  
pp. 839-859 ◽  
Author(s):  
Hugo Guyader ◽  
Mikael Ottosson ◽  
Per Frankelius ◽  
Lars Witell

Purpose The purpose of this paper is to improve the understanding of green service. In particular, the focus is on identifying homopathic and heteropathic resource integration processes that preserve or increase the resourceness of the natural ecosystem. Design/methodology/approach Through an extensive multiple case study involving ten service providers from diverse sectors based on a substantial number of interviews, detailed accounts of green service are provided. Findings Six resource integration processes were identified: reducing, recirculating, recycling, redistributing, reframing and renewing. While four of these processes are based on homopathic resource integration, both reframing and renewing are based on heteropathic resource integration. While homopathic processes historically constitute a green service by mitigating the impact of consumption on the environment, heteropathic resource integration increases the resourceness of the natural ecosystem through emergent processes and the (re)creation of natural resources. Research limitations/implications The present study breaks away from the paradigm that “green service” is about reducing the negative environmental impact of existing services, toward providing a green service that expands biological diversity and other natural resources. Originality/value Transformative service research on environmental sustainability is still in its infancy. The present study contributes through conceptualizing green service, redefining existing resource integration processes (reducing, recirculating, recycling) and identifying new resource integration processes (redistributing, reframing, renewing).


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Camille Grandclément ◽  
Anne Piram ◽  
Marie-Eléonore Petit ◽  
Isabelle Seyssiecq ◽  
Isabelle Laffont-Schwob ◽  
...  

Since bacterial consortia involved in conventional wastewater treatment processes are not efficient in removing diclofenac (DCF), an emerging pollutant frequently detected in water bodies, the identification of microorganisms able to metabolise this pharmaceutical compound is relevant. Thus, DCF removal was investigated using bacteria isolated from aqueous stock solutions of this micropollutant and identified as Bacillus and Brevibacillus species using 16S rRNA gene sequencing. A 100% DCF removal was achieved after 17 hours of experiment at 20°C in a nutrient medium; the biodegradation kinetic followed a pseudo-first order (kbiol = 11 L·gSS−1·d−1). Quantitative assessment of DCF removal showed that its main route was biotic degradation. The main degradation product of DCF, 4′-hydroxy-diclofenac (4′-OH-DCF), was identified using liquid chromatography-electrospray ionisation high-resolution mass spectrometry. Since the ecotoxicological impact of 4′-hydroxy-diclofenac was not reported in the literature, the ecotoxicity of DCF and its metabolite were tentatively evaluated using Vibrio fischeri bioassays. Results from these tests showed that this metabolite is not more toxic than its parent compound and may hopefully be an intermediate product in the DCF transformation. Indeed, no significant difference in ecotoxicity was observed after 30 min between DCF (50 should be writtten in subscript all along the manuscript in EC50 = 23 ± 4 mg·L−1) and 4′-hydroxy-diclofenac (EC50 = 19 ± 2 mg·L−1). Besides, the study highlighted a limit of the Microtox® bioassay, which is largely used to assess ecotoxicity. The bioluminescence of Vibrio fischeri was impacted due to the production of microbial activity and the occurrence of some carbon source in the studied medium.


2020 ◽  
Author(s):  
Xiaofeng Wang

<p>As an important means regulating the relationship between human and natural ecosystem, ecological restoration program plays a key role in restoring ecosystem functions. The Grain-for-Green Program (GFGP, One of the world’s most ambitious ecosystem conservation set-aside programs aims to transfer farmland on steep slopes to forestland or grassland to increase vegetation coverage) has been widely implemented from 1999 to 2015 and exerted significant influence on land use and ecosystem services (ESs). In this study, three ecological models (InVEST, RUSLE, and CASA) were used to accurately calculate the three key types of ESs, water yield (WY), soil conservation (SC), and net primary production (NPP) in Karst area of southwestern China from 1982 to 2015. The impact of GFGP on ESs and trade-offs was analyzed. It provides practical guidance in carrying out ecological regulation in Karst area of China under global climate change. Results showed that ESs and trade-offs had changed dramatically driven by GFGP . In detail, temporally, SC and NPP exhibited an increasing trend, while WY exhibited a decreasing trend. Spatially, SC basically decreased from west to east; NPP basically increased from north to south; WY basically increased from west to east; NPP and SC, SC and WY developed in the direction of trade-offs driven by the GFGP, while NPP and WY developed in the direction of synergy. Therefore, future ecosystem management and restoration policy-making should consider trade-offs of ESs so as to achieve sustainable provision of ESs.</p>


2004 ◽  
Vol 7 (9) ◽  
pp. 781-784 ◽  
Author(s):  
Anthony Ricciardi ◽  
Susanna K. Atkinson

Sign in / Sign up

Export Citation Format

Share Document