scholarly journals Aquatic Toxicity of Photocatalyst Nanoparticles to Green Microalgae Chlorella vulgaris

Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 77
Author(s):  
Cristina Adochite ◽  
Luminita Andronic

In the last years, nanoparticles such as TiO2, ZnO, NiO, CuO and Fe2O3 were mainly used in wastewater applications. In addition to the positive aspects concerning using nanoparticles in the advanced oxidation process of wastewater containing pollutants, the impact of these nanoparticles on the environment must also be investigated. The toxicity of nanoparticles is generally investigated by the nanomaterials’ effect on green algae, especially on Chlorella vulgaris. In this review, several aspects are reviewed: the Chlorella vulgaris culture monitoring and growth parameters, the effect of different nanoparticles on Chlorella vulgaris, the toxicity of photocatalyst nanoparticles, and the mechanism of photocatalyst during oxidative stress on the photosynthetic mechanism of Chlorella vulgaris. The Bold basal medium (BBM) is generally recognized as an excellent standard cultivation medium for Chlorella vulgaris in the known environmental conditions such as temperature in the range 20–30 °C and light intensity of around 150 μE·m2·s−1 under a 16/8 h light/dark cycle. The nanoparticles synthesis methods influence the particle size, morphology, density, surface area to generate growth inhibition and further algal deaths at the nanoparticle-dependent concentration. Moreover, the results revealed that nanoparticles caused a more potent inhibitory effect on microalgal growth and severely disrupted algal cells’ membranes.

2006 ◽  
Vol 19 (1) ◽  
Author(s):  
S. ZARGAR ◽  
K. KRISHNAMURTHI ◽  
S. SARVANA DEVI ◽  
T.K. GHOSH ◽  
T. CHAKRABARTI

The present paper deals with the impact of various sublethal levels of temperature (26, 31, 33, 36, 39, 42 and 45o C) on growth and heat shock protein (Hsp) expression in freshwater green alga Chlorella vulgaris. Impact of select levels of temperature on growth rate (based on optical density), population count, chlorophyll-a and biomass, of the alga was evaluated in artificial growth medium for a period of 15 days. To determine the induction of Hsp in the alga, it was exposed to select temperature levels for 3 hrs. and further kept for 6 hrs at culturing conditions at 26o C. Induction of Hsp was confirmed by immuno detection followed by SDSPolyacrylamide gel electrophoresis. The select growth parameters of the alga were reduced drastically at 39, 42 & 45o C. Temperatures below 39o C may be considered as the limit of safe exposure for thermal stress of the alga. The Hsp 70 expression was also observed only at 39o C.


2016 ◽  
Vol 31 (1-2) ◽  
pp. 59-67 ◽  
Author(s):  
Natalia Georgieva ◽  
Ivelina Nikolova

In order to evaluate the allelopathic effect of Sorghum halepense extracts on germination and initial growth of six pea (Pisum sativum subsp. sativum, Pisum sativum subsp. arvense) cultivars and to identify tolerant cultivars, a laboratory experiment was conducted. The studied cultivars revealed different levels of susceptibility to allelopathic impact of root and aboveground biomass extracts of S. halepense. Root growth parameters (length and weight) of the pea cultivars exhibited greater susceptibility to weed extracts than stem parameters. The inhibitory effects of the extracts on germ length of P. sativum ranged from 1.4% (cultivar Mir) to 45.0% (Kamerton), on germ weight - from 3.5% (Pleven 4) to 42.9% (K-80), and on seed germination - from 11.8% (Mir) to 31.3% (K-80). Total inhibitory effect, i.e. the impact of S. halepense extracts on all studied parameters of P. sativum, revealed that the cultivars Mir and Pleven 4 were the most tolerant. Growing such cultivars may reduce weed damage. Low tolerance was manifested by the cultivar K-80, while Modus, Glyans and Kamerton ranked intermediate. The cultivars with large-size seeds or lower grain protein content were more affected by the depressing effect of S. halepense extracts.


2020 ◽  
Vol 7 (4) ◽  
pp. 170-175
Author(s):  
Jyoti Kapil ◽  
◽  
Neetika Mathur ◽  

The advancement of a country depends upon its industrialization. Of all industrial sectors, the food processing units have highest consumption of water and are biggest producers of effluent per unit of production.The concentration and composition of the effluent depends upon operating methods andthe size and design of the processing plant.The dairy industry generates on an average 6-10 litres of waste water per litre of the milk processed. It has relatively high organic matter, suspended solids, trace organic nutrients which are essential for growth of crop plant. Thus, the utilization of the dairy effluent for irrigation can be an eco friendly approach for its disposal. The present study was carried out to study the influence of dairy effluent on seed germination, seedling growth and biomass production in mung bean (Vigna radiata) and mustard (Brassica nigra). The seeds of both the plant species were grown in petriplates and pots irrigated with various concentrations of dairy effluent (20, 40, 60, 80 and 100%). The dairy effluent concentration of 20% was more favorable for total growth parameters viz., the germination percentage, the shoot length, dry weight and wet weight both in mustard and mung bean. Among different concentrations, 100% concentration of effluent caused inhibitory effect. Thus, it is recommended that only after suitable dilution, the dairy effluent can be effectively used for irrigation.


2020 ◽  
Vol 14 (2) ◽  
pp. 141-152
Author(s):  
Xialing Sun ◽  
Rui Zhang ◽  
Xue Chen ◽  
Pengpeng Li ◽  
Jin Guo

Background: The sustainable development of the building industry has drawn increasing attention around the world. Nanomaterials and nanotechnology play an important role in the processes of energy saving and reducing consumption in the building industry. Nanotechnology patents provide key technological support for the green development of the building industry. Based on patent data in China, this paper quantitatively analyzed the application of nanotechnology patents in the building industry and the time trend, regional differences, and evolution of China's nano-patent applications in the building field. Methods: In this study, the environmental total factor productivity of the building industry considering carbon constraints was determined and then used as the dependent variable to measure the green development of the building industry. On this basis, a panel data regression model was constructed to determine the impact of nano-patents on the green development of the building industry. Results: Nanotechnology patents in the building industry can significantly improve total factor productivity. From the perspective of patent composition, technology-based patents that focus on substantial innovation can significantly promote the green development of the building industry, whereas strategic patents show a significant inhibitory effect. Regionally, the western region of China has the advantage of being less developed and thus more efficient than the central and eastern regions in the application of new nano-products. Finally, the research also showed a significant lag in the application of China's nanotechnology patents and low implementation efficiency. Conclusion: Nano patents can promote green development in the building industry, but there is room for improvement in the speed with which laboratory inventions are transformed into building engineering applications.


2017 ◽  
Vol 5 (2) ◽  
pp. 93-96
Author(s):  
Shashi Kant Shukla ◽  
◽  
Awadhesh Kumar ◽  
Anupam Dikshit ◽  
◽  
...  

The present study aims the impact of Pseudomonas putida on different growth parameters of Trigonella sp., a leguminous plant to support the requirement of food, protein along with their medicinal value in the rural areas of India. A pot experiment was arranged based on completely randomized design with four replications at Biological Product Laboratory, Botany Department, University of Allahabad. Treatments were given at the seed level with one of control. Results indicated that application of P. putida significantly improved vegetative growth and showed an edge on the growth of the fenugreek as compared to the control.


2021 ◽  
Vol 13 (8) ◽  
pp. 4547
Author(s):  
Mohamed E. El-Sharnouby ◽  
Metwally M. Montaser ◽  
Sliai M. Abdallah

The flower industry depends on oil and fragrance, which is addressed in the current work. Different concentrations of NaCl (0, 250, 500, 1000, and 1500 ppm) were applied to Taif rose plants (Rosa damascena var. trigintipetala Dieck) to evaluate their effects on growth and essential oil content. Results clearly indicated the highest survival percentage (98.3%) was seen in untreated plants compared to plants under salinity stress. Moreover, increasing the NaCl levels induced an adverse effect on the growth parameters of Taif rose plants, while some essential oil contents were increased to the maximum degree of their tolerance to salinity stress. The extracted essential oils were analyzed using GC/MS. The essential oils of Taif rose plants treated with 500 ppm NaCl recorded the highest values of citronellol, geraniol and phenylethyl alcohol contents (16.56, 8.67 and 9.87%), respectively. NaCl at 250 ppm produced the highest values of heneicosane (13.12%), and then decreased to the lowest value (7.79%) with the increase of NaCl to 1500 NaCl, compared to the control and other NaCl levels. The current results could highlight the impact of salinity stress on Rosa damascena Miller var. trigintipetala Dieck for better economic and industrial applications.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Johanna Kleeberg-Hartmann ◽  
Birgit Vogler ◽  
Karl Messlinger

Abstract Background Butterbur root extract with its active ingredients petasin and isopetasin has been used in the prophylactic treatment of migraine for years, while its sites of action are not completely clear. Calcitonin gene-related peptide (CGRP) is known as a biomarker and promoting factor of migraine. We set out to investigate the impact of petasins on the CGRP release from trigeminal afferents induced by activation of the calcium conducting transient receptor potential channels (TRPs) of the subtypes TRPA1 and TRPV1. Methods We used well-established in vitro preparations, the hemisected rodent skull and dissected trigeminal ganglia, to examine the CGRP release from rat and mouse cranial dura mater and trigeminal ganglion neurons, respectively, after pre-incubation with petasin and isopetasin. Mustard oil and capsaicin were used to stimulate TRPA1 and TRPV1 receptor channels. CGRP concentrations were measured with a CGRP enzyme immunoassay. Results Pre-incubation with either petasin or isopetasin reduced mustard oil- and capsaicin-evoked CGRP release compared to vehicle in an approximately dose-dependent manner. These results were validated by additional experiments with mice expressing functionally deleted TRPA1 or TRPV1 receptor channels. Conclusions Earlier findings of TRPA1 receptor channels being involved in the site of action of petasin and isopetasin are confirmed. Furthermore, we suggest an important inhibitory effect on TRPV1 receptor channels and assume a cooperative action between the two TRP receptors. These mechanisms may contribute to the migraine prophylactic effect of petasins.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yun-Hung Kuang ◽  
Yu-Fu Fang ◽  
Shau-Ching Lin ◽  
Shin-Fu Tsai ◽  
Zhi-Wei Yang ◽  
...  

Abstract Background The impact of climate change on insect resistance genes is elusive. Hence, we investigated the responses of rice near-isogenic lines (NILs) that carry resistance genes against brown planthopper (BPH) under different environmental conditions. Results We tested these NILs under three environmental settings (the atmospheric temperature with corresponding carbon dioxide at the ambient, year 2050 and year 2100) based on the Intergovernmental Panel on Climate Change prediction. Comparing between different environments, two of nine NILs that carried a single BPH-resistant gene maintained their resistance under the environmental changes, whereas two of three NILs showed gene pyramiding with two maintained BPH resistance genes despite the environmental changes. In addition, two NILs (NIL-BPH17 and NIL-BPH20) were examined in their antibiosis and antixenosis effects under these environmental changes. BPH showed different responses to these two NILs, where the inhibitory effect of NIL-BPH17 on the BPH growth and development was unaffected, while NIL-BPH20 may have lost its resistance during the environmental changes. Conclusion Our results indicate that BPH resistance genes could be affected by climate change. NIL-BPH17 has a strong inhibitory effect on BPH feeding on phloem and would be unaffected by environmental changes, while NIL-BPH20 would lose its ability during the environmental changes.


Marine Drugs ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 38
Author(s):  
Chi-Jen Tai ◽  
Chiung-Yao Huang ◽  
Atallah F. Ahmed ◽  
Raha S. Orfali ◽  
Walied M. Alarif ◽  
...  

Chemical investigation of a Red Sea Spongia sp. led to the isolation of four new compounds, i.e., 17-dehydroxysponalactone (1), a carboxylic acid, spongiafuranic acid A (2), one hydroxamic acid, spongiafuranohydroxamic acid A (3), and a furanyl trinorsesterpenoid 16-epi-irciformonin G (4), along with three known metabolites (−)-sponalisolide B (5), 18-nor- 3,17-dihydroxy-spongia-3,13(16),14-trien-2-one (6), and cholesta-7-ene-3β,5α-diol-6-one (7). The biosynthetic pathway for the molecular skeleton of 1 and related compounds was postulated for the first time. Anti-inflammatory activity of these metabolites to inhibit superoxide anion generation and elastase release in N-formyl-methionyl-leucyl phenylalanine/cytochalasin B (fMLF/CB)-induced human neutrophil cells and cytotoxicity of these compounds toward three cancer cell lines and one human dermal fibroblast cell line were assayed. Compound 1 was found to significantly reduce the superoxide anion generation and elastase release at a concentration of 10 μM, and compound 5 was also found to display strong inhibitory activity against superoxide anion generation at the same concentration. Due to the noncytotoxic activity and the potent inhibitory effect toward the superoxide anion generation and elastase release, 1 and 5 can be considered to be promising anti-inflammatory agents.


2021 ◽  
Vol 13 (5) ◽  
pp. 2730
Author(s):  
Yuan Zhao ◽  
Tian Zhang ◽  
Ting Wu ◽  
Shujing Xu ◽  
Shuwang Yang

Technological progress has always been regarded as an important factor affecting haze pollution. A large number of academic studies have focused on the effect of technological progress on haze pollution, but there are few discussions on the effects of technological progress from different sources. In view of this, a dynamic panel model is constructed, and a systematic generalized method of moments (GMM) method is applied to empirically test the overall impact of technological progress from different sources on haze pollution and the regional heterogeneity of the impact. The results show that the overall and regional impact of technological progress from different sources on haze pollution is entirely different. Among them, for the whole country, independent innovation has a significant inhibitory effect on haze pollution, and technology introduction has aggravated haze pollution to a certain extent. At the regional level, all types of technological progress in the east can effectively reduce haze, the central region having haze reduction results consistent with the overall national level, and in the west, independent innovation and direct introduction can effectively reduce haze, while reverse technology spillover is ineffective. Therefore, policy recommendations such as improving the ability of independent innovation, improving the quality of technology introduction, and coordinating regional technology against haze are put forward.


Sign in / Sign up

Export Citation Format

Share Document