An experimental study on iron removal with ferric sludge recycling

2000 ◽  
Vol 42 (1-2) ◽  
pp. 393-397 ◽  
Author(s):  
N. Tufekci ◽  
H.Z. Sarikaya ◽  
I. Ozturk

An iron removal process, which makes use of the catalytic effect of ferric iron, is proposed. For this purpose, the reaction kinetics derived from the data of the batch experiments was applied to the continuous flow system. Based upon this reaction kinetics, it has been theoretically demonstrated that the volumes of aeration tanks can be significantly reduced by keeping a high concentration of ferric iron in the reactor. However, in natural waters, Fe(II) is found commonly to be in the range of 0.01–10 mg/l. These ferrous iron concentrations are not high enough to maintain the high concentrations of ferric iron in the aeration tank. Therefore, similar to the activated sludge processes used in wastewater treatment, it is suggested that the required Fe(III) concentrations can be maintained by recycling Fe(OH)3 sludge back to the aeration tank. It is known that the oxygenation of ferrous iron is catalyzed by the reaction product, ferric hydroxide. Catalytic action of the ferric iron sludges on the oxidation of ferrous iron by aeration has been identified and the kinetics of this catalytic reaction has been formulated by the authors. The oxidation of Fe(II) was studied in batch reactors in which the concentration of Fe(III) was in the range of 0–600 mg/l. The oxygenation rate increased linearly with the increasing Fe(III) concentrations up to 50 mg/l and a second-order polynomial relationship was found between the reaction rate and the Fe(III) concentrations in the range of 50–600 mg/l. The required volume (V) of the aeration tank and the effluent Fe(II) concentrations were determined as a function of the Fe(III) concentration. The volume of the aeration tank required for the same Fe(II) conversion was reduced by a factor of 15 when the Fe(III) concentration was raised from 0 to 600 mg/l at pH=6.7. No incremental benefit of the increase of Fe(III) concentration was observed at Fe(III) levels beyond the 600 mg/l. This study has experimentally demonstrated that significant savings can be achieved in iron removal systems by recirculating the Fe(III) sludges back to the aeration tank.

2013 ◽  
Vol 81 (11) ◽  
pp. 4182-4191 ◽  
Author(s):  
Huaixin Zheng ◽  
Christa H. Chatfield ◽  
Mark R. Liles ◽  
Nicholas P. Cianciotto

ABSTRACTIron acquisition is critical to the growth and virulence ofLegionella pneumophila. Previously, we found thatL. pneumophilauses both a ferrisiderophore pathway and ferrous iron transport to obtain iron. We now report that two molecules secreted byL. pneumophila, homogentisic acid (HGA) and its polymerized variant (HGA-melanin, a pyomelanin), are able to directly mediate the reduction of various ferric iron salts. Furthermore, HGA, synthetic HGA-melanin, and HGA-melanin derived from bacterial supernatants enhanced the ability ofL. pneumophilaand other species ofLegionellato take up radiolabeled iron. Enhanced iron uptake was not observed with a ferrous iron transport mutant. Thus, HGA and HGA-melanin mediate ferric iron reduction, with the resulting ferrous iron being available to the bacterium for uptake. Upon further testing ofL. pneumophilaculture supernatants, we found that significant amounts of ferric and ferrous iron were associated with secreted HGA-melanin. Importantly, a pyomelanin-containing fraction obtained from a wild-type culture supernatant was able to stimulate the growth of iron-starved legionellae. That the corresponding supernatant fraction obtained from a nonpigmented mutant culture did not stimulate growth demonstrated that HGA-melanin is able to both promote iron uptake and enhance growth under iron-limiting conditions. Indicative of a complementary role in iron acquisition, HGA-melanin levels were inversely related to the levels of siderophore activity. Compatible with a role in the ecology and pathogenesis ofL. pneumophila, HGA and HGA-melanin were effective at reducing and releasing iron from both insoluble ferric hydroxide and the mammalian iron chelates ferritin and transferrin.


1998 ◽  
Vol 38 (6) ◽  
pp. 129-137 ◽  
Author(s):  
Nese Tufekci ◽  
Hasan Z. Sarikaya

The catalytic effect of freshly formed or added ferric iron on the Fe(II) oxidation has been demonstrated by previous studies. High Fe(III) concentrations significantly accelerate the oxygenation rate. High Fe(III) concentrations can be maintained only by sludge recycle which eventually leads to sludge ages as high as 10 days. Therefore, the aim of this study was to determine whether ageing of ferric hydroxide sludge affects its catalytic effect on the oxidation of ferrous iron by aeration. In order to reach this aim four different groups of experiments were carried out using ferric hydroxide sludge aged for a period of 0 to 10 days. Initial Fe(III) concentrations were varied within the range of 50 mg/l to 200 mg/l. It has been demonstrated that the catalytic effect of ferric hydroxide sludge on the oxidation of ferrous iron by aeration increases with increasing sludge age contrary to what is commonly expected. It has been concluded that, catalytic oxidation rate constant kcat obtained from the batch systems can safely be used in design of continuous flow iron oxidation reactors with sludge recycle.


2021 ◽  
pp. 105624
Author(s):  
Tianxiang Nan ◽  
Jianguang Yang ◽  
Chaobo Tang ◽  
Weizhi Zeng ◽  
Qiang Zhu ◽  
...  

1995 ◽  
Vol 49 (11) ◽  
pp. 1669-1676 ◽  
Author(s):  
Sahar F. Mahmoud ◽  
Stephen E. Bialkowski

In this research, laser-excited fluorescence was examined for sensitive detection of aqueous dityrosine. Samples were excited with a 6.3-mW, 325-nm helium-cadmium laser focused into a small volume-fluorescence cell with a 10-cm lens. The resulting fluorescence emission was collected perpendicular to the excitation and detected with two different schemes. An optical bandpass filter was used with a photomultiplier tube for sensitive quantitative measurement, while a photodiode array detector was used in conjunction with a spectrograph for qualitative characterization of fluorescence emission spectra. Dityrosine detection on the order of 2 × 10−11 M was obtained with the use of the photomultiplier tube with bandpass optical filter. The dityrosine fluorescence yield is found to vary with the solution pH, the relative concentrations of ferric and ferrous iron, and the amount of dissolved oxygen. A maximum fluorescence yield is observed for iron-free, oxygen-free alkaline solutions. Fluorescence quenching by oxygen is a cumulative photolysis effect that diminished fluorescence yield with increased irradiation time. Flowing the solutions minimized photolysis effects in oxygenated solutions. Quenching by ferrous and ferric iron is found to be due primarily to complex formation. The ferrous iron complex appears to have a fluorescence efficiency of ∼20% of the free dityrosine. The ferric iron dityrosine complex appears to have two ferric ions per molecule at low iron concentration. Other complexes may form at different concentrations. Solvent effects on dityrosine absorption and fluorescence spectra were also investigated. A red shift in dityrosine fluorescence maximum was observed in 1 M trichloroacetic acid and in N, N-dimethylformamide. The fluorescence emission maximum was shifted to the blue in acetonitrile and glacial acetic acid. These shifts were attributed to typical solvochromic behavior.


Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 583
Author(s):  
Dongdong He ◽  
Yuming Xiong ◽  
Li Wang ◽  
Wei Sun ◽  
Runqing Liu ◽  
...  

Arsenic (As) is considered one of the most serious inorganic pollutants, and the wastewater produced in some smelters contains a high concentration of arsenic. In this paper, we purified the high-concentration arsenic solution with red mud and Fe3+ synergistically. In this system, arsenite anions reacted with Fe(III) ions to form ferric arsenite, which attached on the surface of red mud particles. The generated red mud/Fe1−x(As)x(OH)3 showed a better sedimentation performance than the pure ferric arsenite, which is beneficial to the separation of arsenic from the solution. The red mud not only served as the carrier, but also as the alkaline agent and adsorbent for arsenic treatment. The effects of red mud dosage, dosing order, pH, and molar ratio of Fe/As on arsenic removal were investigated. The efficiency of arsenic removal increased from a pH of 2 to 6 and reached equilibrium at a pH of 7. At the Fe/As molar ratio of 3, the removal efficiency of arsenic ions with an initial concentration of 500 mg/L reached 98%. In addition, the crystal structure, chemical composition, and morphological properties of red mud and arsenic removal residues (red mud/Fe1−x(As)x(OH)3) were characterized by XRD, XPS, X-ray fluorescence (XRF), SEM-EDS, and Raman spectroscopy to study the mechanism of arsenic removal. The results indicated that most of the arsenic was removed from the solution by forming Fe1−x(As)x(OH)3 precipitates on the red mud surface, while the remaining arsenic was adsorbed by the red mud and ferric hydroxide.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Noer Abyor Handayani ◽  
Elsa Anisa Krisanti ◽  
Sutrasno Kartohardjono ◽  
Kamarza Mulia

A proper understanding of the properties of iron could increase the effectiveness of programmes for alleviating iron deficiency. Recently, encapsulation has been considered an appropriate method for protecting iron from injurious reactions. However, several events may occur during encapsulation processes, including changes in the iron’s oxidation state. Oxidation of ferrous iron is not desirable since the intestines can only absorb iron in the ferrous form. In this study, a cyclic voltammetry method was applied to investigate the likelihood of ferrous gluconate oxidation for the preparation of chitosan-tripolyphosphate microparticles. Then, the electrochemical properties of ferrous gluconate were confirmed experimentally. The oxidation rate of ferrous gluconate is also discussed in this paper. All the experimental solutions were formulated in detail to produce conditions similar to those of microparticle production. Cyclic voltammetry analysis was conducted using a configuration of three electrodes connected to an electrochemical analyser. Graphite, platinum wire, and Ag/AgCl were employed as the auxiliary, working, and reference electrodes, respectively. The cyclic voltammetry results show that the observed potential for each anodic peak shifted negatively in the presence of chitosan and sodium tripolyphosphate. Moreover, the rate of ferrous oxidation tended to increase during 75 min of experiments due to the presence of chitosan and sodium tripolyphosphate. These behaviours indicate the transformation of ferrous iron to ferric iron during iron microparticle preparation. Furthermore, these findings suggest that spray drying is a preferable method to minimise the oxidation reaction.


1991 ◽  
Vol 55 (378) ◽  
pp. 3-18 ◽  
Author(s):  
John C. Schumacher

AbstractThe ferromagnesian silicate minerals, such as garnets, pyroxenes, micas, and amphiboles, appear in a variety of geothermometers and geobarometers. Where complete chemical analyses are available and regardless of bulk composition (metamorphosed pelitic or mafic), the aforementioned minerals commonly contain ferric iron. In mineral analyses using the electron microprobe, ferric and ferrous iron are not distinguished, and all the iron is treated as FeO. In ferric Fe-bearing minerals, this treatment results in (1) low analytical sums and (2) excess cations in the mineral formulae. Assuming ideal stoichiometry (ideal formula cations and oxygens) allows direct ferric estimates in garnets and pyroxenes; amphiboles require additional assumptions concerning site occupancies, and, for micas, no acceptable constraint exists for a ferric estimate. Based on ferric iron determinations for some metamorphic ferromagnesian silicates, the proportion of ferric to total iron increases at higher XMg values. The influence of ferric estimates on T and P calculations depends on the model used and on the extent the ferric estimate alters the relative proportions of end-members. Several examples suggest that, in general, if ferric estimates (or determinations) are made, they should be made for all the relevant minerals.


2017 ◽  
Vol 199 (12) ◽  
Author(s):  
Eric D. Peng ◽  
Shelley M. Payne

ABSTRACT Vibrio cholerae is the causative agent of the severe diarrheal disease cholera. V. cholerae thrives within the human host, where it replicates to high numbers, but it also persists within the aquatic environments of ocean and brackish water. To survive within these nutritionally diverse environments, V. cholerae must encode the necessary tools to acquire the essential nutrient iron in all forms it may encounter. A prior study of systems involved in iron transport in V. cholerae revealed the existence of vciB, which, while unable to directly transport iron, stimulates the transport of iron through ferrous (Fe2+) iron transport systems. We demonstrate here a role for VciB in V. cholerae in which VciB stimulates the reduction of Fe3+ to Fe2+, which can be subsequently transported into the cell with the ferrous iron transporter Feo. Iron reduction is independent of functional iron transport but is associated with the electron transport chain. Comparative analysis of VciB orthologs suggests a similar role for other proteins in the VciB family. Our data indicate that VciB is a dimer located in the inner membrane with three transmembrane segments and a large periplasmic loop. Directed mutagenesis of the protein reveals two highly conserved histidine residues required for function. Taken together, our results support a model whereby VciB reduces ferric iron using energy from the electron transport chain. IMPORTANCE Vibrio cholerae is a prolific human pathogen and environmental organism. The acquisition of essential nutrients such as iron is critical for replication, and V. cholerae encodes a number of mechanisms to use iron from diverse environments. Here, we describe the V. cholerae protein VciB that increases the reduction of oxidized ferric iron (Fe3+) to the ferrous form (Fe2+), thus promoting iron acquisition through ferrous iron transporters. Analysis of VciB orthologs in Burkholderia and Aeromonas spp. suggest that they have a similar activity, allowing a functional assignment for this previously uncharacterized protein family. This study builds upon our understanding of proteins known to mediate iron reduction in bacteria.


2009 ◽  
Vol 71-73 ◽  
pp. 505-508 ◽  
Author(s):  
N. Papassiopi ◽  
K. Vaxevanidou ◽  
A. Kontogianni

Bio-beneficiation of ores through iron removal is a common technique, but not yet tested for the case of bauxite. In this study we compared the iron reducing ability of three bacterial species with and without the chelating action of EDTA. Tests were carried out using a diasporic bauxite sample containing 19.3% Fe2Ο3 in the form of hematite, goethite and chamosite. Reductive dissolution was attempted using three neutrophilic, dissimilatory Fe(III) respirators, i.e. the facultative anaerobes Shewanella putrefaciens and Ferrimonas balearica and the strict anaerobe Desulfuromonas palmitatis. Almost 25% of Fe was reduced by D. palmitatis and S. putrefaciens and 30% by F. balearica in bauxite samples. In the case of S. putrefaciens and F. balearica, Fe(III) reduction took place without addition of EDTA, but most of the biologically produced Fe(II) reprecipitated. The addition of EDTA proved to hinder the bioreduction potential for both S. putrefaciens and F. balearica. On the contrary, D. palmitatis was able to reduce Fe(III) oxides only in the presence of EDTA. Moreover, the presence of EDTA helped maintain biogenic ferrous iron in solution.


2014 ◽  
Vol 77 (12) ◽  
pp. 2133-2138 ◽  
Author(s):  
AMIN N. OLAIMAT ◽  
BABAK SOBHI ◽  
RICHARD A. HOLLEY

Factors, including pH, temperature, glucose concentration, and iron compounds, affect the activity of plant myrosinase and, consequently, endogenous glucosinolate degradation. These factors also may affect glucosinolate degradation by bacterial myrosinase. Therefore, this study examined the effect of temperature (4 to 21°C), glucose (0.05 to 1.0%), and iron (10 mM ferrous or ferric) on sinigrin degradation by Salmonella or Listeria monocytogenes cocktails in Mueller-Hinton broth and the effect of sinigrin degradation on bacterial viability. The degradation of sinigrin by both pathogens increased with higher temperatures (21 > 10 > 4°C). Salmonella and L. monocytogenes cocktails hydrolyzed 59.1 and 53.2% of sinigrin, respectively, at 21°C up to 21 days. Both iron compounds significantly enhanced sinigrin degradation by the pathogens. On day 7, sinigrin was not detected when the Salmonella cocktail was cultured with ferrous iron or when the L. monocytogenes cocktail was cultured in Mueller-Hinton broth containing ferric iron. In contrast, ferric and ferrous iron inhibited the activity of 0.002 U/ml myrosinase from white mustard by 63 and 35%, respectively, on day 1. Salmonella and L. monocytogenes cocktails were able to degrade >80% of sinigrin at 0.05 and 0.1% glucose; however, 0.25 to 1.0% glucose significantly reduced sinigrin degradation. Although both pathogens significantly degraded sinigrin, the allyl isothiocyanate (AITC) recoverable was ≤6.2 ppm, which is not inhibitory to Salmonella or L. monocytogenes. It is probable that the gradual hydrolysis of sinigrin to form AITC either did not produce an inhibitory level of AITC or the AITC formed was unstable in the aqueous medium and rapidly decomposed to new compounds that were less bactericidal against the pathogens.


Sign in / Sign up

Export Citation Format

Share Document