scholarly journals Evaluation of control strategies using an oxidation ditch benchmark

2002 ◽  
Vol 45 (4-5) ◽  
pp. 151-158 ◽  
Author(s):  
A. Abusam ◽  
K.J. Keesman ◽  
H. Spanjers ◽  
G. van Straten ◽  
K. Meinema

This paper presents validation and implementation results of a benchmark developed for a specific full-scale oxidation ditch wastewater treatment plant. A benchmark is a standard simulation procedure that can be used as a tool in evaluating various control strategies proposed for wastewater treatment plants. It is based on model and performance criteria development. Testing of this benchmark, by comparing benchmark predictions to real measurements of the electrical energy consumptions and amounts of disposed sludge for a specific oxidation ditch WWTP, has shown that it can (reasonably) be used for evaluating the performance of this WWTP. Subsequently, the validated benchmark was then used in evaluating some basic and advanced control strategies. Some of the interesting results obtained are the following: (i) influent flow splitting ratio, between the first and the fourth aerated compartments of the ditch, has no significant effect on the TN concentrations in the effluent, and (ii) for evaluation of long-term control strategies, future benchmarks need to be able to assess settlers' performance.

2017 ◽  
Vol 6 (1) ◽  
pp. 58-65
Author(s):  
Тумашев ◽  
R. Tumashev ◽  
Щеголев ◽  
N. Schegolev ◽  
Назаревич ◽  
...  

Improving the ecological condition of water basins is closely connected with reconstruction of systems for water disposal and wastewaters treatment. Modernization of old-fashioned wastewater treatment plants, and operating cost saving is possible by means of transition to effective technological solutions, including the process of substrate anaerobic digestion with production of biogas and raw material for high-quality fertilizers. Biogas can be used in power stations for production of thermal and electrical energy required for wastewater treatment plant needs. This energy also reduces the plant’s operating cost. A scheme of a module for anaerobic digestion has been proposed, and application of utilization cogeneration gas-turbine units with an external supply of warmth to cyclic air has been justified. Optimum parameters of utilization gas-turbine units have been determined. At air temperature in front of the turbine 1190 K the compression ratio in a cycle is equal to 4,2, electric efficiency — 0,313, the general one taking into account the developed warmth — 0,872. In some cases the gas-turbine unit can be manufactured without booster fuel compressor.


Author(s):  
S. Saravana Kumar ◽  
K. Latha

Abstract The application of control strategies in wastewater treatment plants has increased to improve its performance of treating the influent. Fuzzy Logic controller plays a vital role in this work and the simulation work is being carried out in Benchmark simulation model no.1 (BSM1) framework. The attempted work proposes two control schemes with the objectives of improving the effluent quality and minimizing the number of measurements taken from the plant. The design of fuzzy control schemes is based on 5 inputs and 6 outputs in order to accomplish the objectives. Experimental results show improvement in the effluent quality and increase in the efficacy of the control system. The proposed design is implemented using MATLAB with the adaptation of 2014a.


Author(s):  
Yang Song ◽  
Cheng-Ying Jiang ◽  
Zong-Lin Liang ◽  
Hai-Zhen Zhu ◽  
Yong Jiang ◽  
...  

Biological foaming (or biofoaming) is a frequently occurring problem in wastewater treatment plants (WWTPs) and is attributed to the overwhelming growth of filamentous bulking and foaming bacteria (BFB). Biological foaming has been intensively investigated, with BFB like Microthrix and Skermania having been identified from WWTPs and implicated in foaming. Nevertheless, studies are still needed to improve our understanding of the microbial diversity of WWTPs biofoams and how microbial activities contribute to foaming. In this study, sludge foaming at the Qinghe WWTP of China was monitored, and sludge foams were investigated using culture-dependent and culture-independent microbiological methods. The foam microbiomes exhibited high abundances of Skermania , Mycobacterium , Flavobacteriales , and Kaistella . A previously unknown bacterium, Candidatus Kaistella beijingensis, was cultivated from foams, its genome sequenced, and it was phenotypically characterized. Ca . K. beijingensis exhibits hydrophobic cell surfaces, produces extracellular polymeric substances (EPS), and metabolizes lipids. Ca . K. beijingensis abundances were proportional to EPS levels in foams. Several proteins encoded by the Ca . K. beijingensis genome were identified from EPS that was extracted from sludge foams. Ca . K. beijingensis populations accounted for 4–6% of the total bacterial populations in sludge foam samples within the Qinghe WWTP, although their abundances were higher in spring than in other seasons. Co-occurrence analysis indicated that Ca . K. beijingensis was not a core node among the WWTP community network, but its abundances were negatively correlated with those of the well-studied BFB Sker mania piniformis among cross-season Qinghe WWTP communities. Importance Biological foaming or scumming is a sludge separation problem that has become the subject of major concern for long-term stable activated sludge operation in decades. Biological foaming was considered induced by foaming bacteria. However, the occurrence and deterioration of foaming in many WWTPs are still not completely understood. Cultivation and characterization of the enriched bacteria in foaming are critical to understand their genetic, physiological, phylogenetic, and ecological traits, as well as to improve the understanding of their relationships with foaming and performance of WWTPs.


2015 ◽  
Vol 6 (3) ◽  
pp. 421-429 ◽  
Author(s):  
F. Kretschmer ◽  
G. Neugebauer ◽  
R. Kollmann ◽  
M. Eder ◽  
F. Zach ◽  
...  

Although the main function of a wastewater treatment plant (WWTP) is to remove various constituents from wastewater it can also serve as a source of energy and other materials. The generated resources can be used either on-site at the WWTP or elsewhere at an adjacent infrastructure. In the course of a current national research project, the possibilities and potentials regarding the integration of WWTPs into local energy supply concepts are being investigated in Austria. Preliminary results show that in particular the amount of thermal energy available exceeds by far the on-site demands of WWTPs. Even on-site electrical energy demands could be self-addressed under certain conditions. This paper describes the estimation of total energy consumption and generation and the related degree of energetic self-sufficiency at certain Austrian WWTPs. Preliminary results regarding the development of a tool for evaluating and optimising on-site and externally supplied use of energy are presented. Finally, the possibilities of energy supply for neighbouring spatial structures are discussed briefly and conclusions drawn about the potential to develop WWTPs as regional energy cells.


2012 ◽  
Vol 65 (5) ◽  
pp. 789-794 ◽  
Author(s):  
C. Locher ◽  
C. Meyer ◽  
H. Steinmetz

Fuel cells on wastewater treatment plants are a relatively new technology to convert biogas from anaerobic digestion into thermal and electrical energy. Since the end of 2007, a type of MCFC fuel cell (>250 kWel, 180 kWth) has been installed at Stuttgart-Möhringen wastewater treatment plant. The goals of this research project are to raise the power self-sufficiency in Stuttgart-Möhringen, to further optimise high temperature fuel cells using biogas and to gain practical experience. After approximately 9,000 h of operation, a mean electrical ‘gross’-efficiency of 44% was achieved. To fully exploit this high electrical efficiency, it is essential to keep the energy consumption of peripheral devices (gas pressure unit, gas cleaning unit, etc.) of the fuel cell as low as possible.


2021 ◽  
Vol 11 (22) ◽  
pp. 10836
Author(s):  
Fredy Kristjanpoller ◽  
Nicolás Cárdenas-Pantoja ◽  
Pablo Viveros ◽  
Rodrigo Mena

Wastewater treatment is a critical and necessary task every human settlement is obligated to address. If not, the consequences might be catastrophic, not just for humans but for the ecosystems as well, pushing research into finding new ways to improve wastewater treatment processes to make them safer and more efficient. Hence, there is a need to address matters, such as reliability and maintainability of Wastewater Treatment Plants (WWTP), when analyzing the availability and operational conditions. These should be addressed by analyzing the plant operational effectiveness impact (P-OEI), and in this article specifically, a WWTP study case to identify design flaws or improvement opportunities. A vital aspect of a complex system is to determine the contribution to resilience, reliability, and availability of every element embedded in the system. This is performed by adapting and applying the P-OEI methodology and real data of a WWTP located in Chile. This methodology breaks down the system into several levels of disaggregation similar to RBD methodology, analyzing the upstream for availability and the downstream for the P-OEI analysis from the system itself to the individual elements within subsystems. The potential impact on the overall system’s lack of efficiency is also quantified by an Expected Operational Impact (EOI) index, which is also calculated by the methodology. The P-OEI and EOI analyses performed in this study are powerful tools to assess the design and performance of complex systems and WWTP in particular.


2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Luchien Luning ◽  
Paul Roeleveld ◽  
Victor W.M. Claessen

In recent years new technologies have been developed to improve the biological degradation of sewage sludge by anaerobic digestion. The paper describes the results of a demonstration of ultrasonic disintegration on the Dutch Wastewater Treatment Plant (WWTP) Land van Cuijk. The effect on the degradation of organic matter is presented, together with the effect on the dewatering characteristics. Recommendations are presented for establishing research conditions in which the effect of sludge disintegration can be determined in a more direct way that is less sensitive to changing conditions in the operation of the WWTP. These recommendations have been implemented in the ongoing research in the Netherlands supported by the National Institute for wastewater research (STOWA).


1993 ◽  
Vol 28 (10) ◽  
pp. 1-8 ◽  
Author(s):  
A. Gaber ◽  
M. Antill ◽  
W. Kimball ◽  
R. Abdel Wahab

The implementation of urban village wastewater treatment plants in developing countries has historically been primarily a function of appropriate technology choice and deciding which of the many needy communities should receive the available funding and priority attention. Usually this process is driven by an outside funding agency who views the planning, design, and construction steps as relatively insignificant milestones in the overall effort required to quickly better a community's sanitary drainage problems. With the exception of very small scale type sanitation projects which have relatively simple replication steps, the development emphasis tends to be on the final treatment plant product with little or no attention specifically focused on community participation and institutionalizing national and local policies and procedures needed for future locally sponsored facilities replication. In contrast to this, the Government of Egypt (GOE) enacted a fresh approach through a Local Development Program with the United States AID program. An overview is presented of the guiding principals of the program which produced the first 24 working wastewater systems including gravity sewers, sewage pumping stations and wastewater treatment plants which were designed and constructed by local entities in Egypt. The wastewater projects cover five different treatment technologies implemented in both delta and desert regions.


2021 ◽  
Vol 13 (9) ◽  
pp. 1757
Author(s):  
Javier Burgués ◽  
María Deseada Esclapez ◽  
Silvia Doñate ◽  
Laura Pastor ◽  
Santiago Marco

Wastewater treatment plants (WWTPs) are sources of greenhouse gases, hazardous air pollutants and offensive odors. These emissions can have negative repercussions in and around the plant, degrading the quality of life of surrounding neighborhoods, damaging the environment, and reducing employee’s overall job satisfaction. Current monitoring methodologies based on fixed gas detectors and sporadic olfactometric measurements (human panels) do not allow for an accurate spatial representation of such emissions. In this paper we use a small drone equipped with an array of electrochemical and metal oxide (MOX) sensors for mapping odorous gases in a mid-sized WWTP. An innovative sampling system based on two (10 m long) flexible tubes hanging from the drone allowed near-source sampling from a safe distance with negligible influence from the downwash of the drone’s propellers. The proposed platform is very convenient for monitoring hard-to-reach emission sources, such as the plant’s deodorization chimney, which turned out to be responsible for the strongest odor emissions. The geo-localized measurements visualized in the form of a two-dimensional (2D) gas concentration map revealed the main emission hotspots where abatement solutions were needed. A principal component analysis (PCA) of the multivariate sensor signals suggests that the proposed system can also be used to trace which emission source is responsible for a certain measurement.


Sign in / Sign up

Export Citation Format

Share Document