Photo-Fenton reaction using a nanocomposite

2004 ◽  
Vol 49 (4) ◽  
pp. 85-90 ◽  
Author(s):  
P.L. Yue ◽  
J.Y. Feng ◽  
X. Hu

A laponite RD clay-based Fe nanocomposite (Fe-Lap-RD) has been synthesized by the so-called pillaring technique. The X-ray diffraction (XRD) results reveal that the Fe-Lap-RD mainly consists of Fe2O3 (maghemite) crystallites and Fe2SiO10(OH)2 (iron silicate hydroxide) crystallites, respectively. The photo-catalytic activity of the Fe-Lap-RD for the degradation of an organic azo dye Orange II is examined. It is found that the rate of mineralization of Orange II is slower than that of discoloration. Under optimal conditions, 100% color and 70% total organic carbon (TOC) of 0.2 mM Orange II can be removed in 45 and 90 minutes, respectively. In addition, the performance of a strongly acidic type of ion exchange resin based catalyst as a heterogeneous photo-Fenton catalyst for the degradation of salicylic acid is also discussed.

2021 ◽  
Vol 17 ◽  
Author(s):  
Ke Huan ◽  
Li Tang ◽  
Dongmei Deng ◽  
Huan Wang ◽  
Xiaojing Si ◽  
...  

Background: Hydrogen peroxide (H2O2) is a common reagent in the production and living, but excessive H2O2 may enhance the danger to the human body. Consequently, it is very important to develop economical, fast and accurate techniques for detecting H2O2. Methods: A simple two-step electrodeposition process was applied to synthesize Pd-Cu/Cu2O nanocomposite for non-enzymatic H2O2 sensor. Cu/Cu2O nanomaterial was firstly electrodeposited on FTO by potential oscillation technique, and then Pd nanoparticles were electrodeposited on Cu/Cu2O nanomaterial by cyclic voltammetry. The chemical structure, component, and morphology of the synthesized Pd-Cu/Cu2O nanocomposite were characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The electrochemical properties of Pd-Cu/Cu2O nanocomposite were studied by cyclic voltammetry and amperometry. Results: Under optimal conditions, the as-fabricated sensor displayed a broad linear range (5-4000 µM) and low detection limit (1.8 µM) for the determination of H2O2. The proposed sensor showed good selectivity and reproducibility. Meanwhile, the proposed sensor has been successfully applied to detect H2O2 in milk. Conclusion: The Pd-Cu/Cu2O/FTO biosensor exhibits excellent electrochemical activity for H2O2 reduction, which has great potential application in the field of food safety.


Author(s):  
S. Prabha ◽  
V.L. Chandraboss ◽  
J. Kamalakannan ◽  
S. Senthilvelan

The photocatalytic activity was studied under UV light using AC-Cd/TiO2 prepared via precipitation method and characterized by powder X-ray diffraction (XRD) , high resolution scanning electron micrographs (HR-SEM) with energy dispersive X-ray analysis (EDX), photoluminescence (PL) and Fourier transform Raman analysis (FT-RAMAN). The enhanced photo catalytic activity of the AC-Cd/TiO2 is demonstrated through photodegradation of methylene blue under UV light radiation at 365 nm. The mechanism of photocatalytic effect of AC-Cd/TiO2 nanocomposite material has been discussed Further its antibacterial activity against two gram positive and two gram negative bacterial strain is studied.


2019 ◽  
Vol 13 (26) ◽  
pp. 171-177
Author(s):  
Ban M. Al-Shabander

Titanium dioxide nanorods have been prepared by sol-gel templatemethod. The structural and surface morphology of the TiO2 nanorods wasinvestigated by X-ray diffraction (XRD) and atomic force microscopy(AFM), it was found that the nanorods produced were anatase TiO2 phase.The photocatalytic activity of the TiO2 nanorods was evaluated by thephoto degradation of methyl orange (MO). The relatively higherdegradation efficiency for MO (D%=78.2) was obtained after 6h of exposedto UV irradiation.


2013 ◽  
Vol 838-841 ◽  
pp. 2306-2309
Author(s):  
Guang Hua Wang ◽  
Kun Chen ◽  
Wen Bing Li ◽  
Dong Wan ◽  
Qin Hu ◽  
...  

Magnetic modified organobentonite (Fe3O4/CTAB–Bent) was synthesized by chemical co-precipitation method in which CTAB–Bent was firstly achieved via ion–exchange.The composite materials have been characterized by powder X–ray diffraction (XRD), Fourier transform infrared spectroscopy (FT–IR) and Scanning electron microscopy (SEM) . The results revealed that basal spacing of bentonite was increased through organic modification and the Fe3O4 particles synthesized which covering the surfaces of bentonite .Compared with natural bentonite, the adsorption capacity of Fe3O4/CTAB–Bent for Orange II was greatly enhanced and can be easily separated from the reaction medium by an external magnetic field after the treatment.


2011 ◽  
Vol 236-238 ◽  
pp. 2040-2044
Author(s):  
Han Min Xiao ◽  
Shi Zhao Kang ◽  
Die Er Yin ◽  
Xiang Qing Li ◽  
La Di Jia

CdS nanoparticles were prepared and simultaneously loaded on the ion exchange resin microspheres via a simple in-situ gas-solid reaction. X-ray diffraction (XRD), scanning electron microscope (SEM), EDX analysis and UV-vis spectra were used to characterize the products. The results indicated that the CdS nanoparticles were loaded on the ion exchange resin microspheres, and the average size of particles was approximately 5.3 nm. The nanoparticle coverage was high so that a continuous nanoparticle shell formed on the ion exchange resin microspheres. In addition, the effect of Pb2+ ions (aq.) on the luminescence of the CdS nanoparticles immobilized on the ion exchange resin microspheres were investigated. It was found that the luminescence intensity of the CdS nanoparticles changed significantly when Pb2+ ions were adsorbed on the sample. The lowest concentration of Pb2+ ions that can make the intensity change is 1.0´10-20 mol×dm-3, which implies that the CdS nanoparticles immobilized on the ion exchange resin microspheres are very sensitive to Pb2+ ions (aq.).


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
A. Battas ◽  
A. El Gaidoumi ◽  
A. Ksakas ◽  
A. Kherbeche

Our research aimed at the removal of nitrate ions through adsorption by local clay. A series of batch experiments were conducted to examine the effects of contact time, adsorbent characteristics, initial concentration of nitrate, pH of the solution, concentration, and granulometry of adsorbent. Adsorption isotherms studies indicated that local clay satisfies Freundlich’s model. The rate of reaction follows pseudo-second-order kinetics. Local clay successfully adsorbs nitrates at pH acid. The adsorption capacity under optimal conditions was found to be 5.1 mg/g. The adsorption yield increases with adsorbent dose and decrease with initial concentration of nitrate. The local clay was characterized by the X-ray fluorescence method (XRF), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), scanning electronics microscopy (SEM), and measurement of specific surface area (BET). The results of the study indicated that local clay is useful materials for the removal of nitrates from aqueous solutions which can be used in water treatment without any chemical modification.


e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Yian Zheng ◽  
Aiqin Wang

AbstractIn this work, a novel water-managing superabsorbent composite was prepared by graft copolymerization reaction using acrylic acid (AA) and acrylamide (AM) as the monomers, calcium montmorillonite (Ca-MMT) as an inorganic component and sodium humate (SH) as fertilizer, and well characterized by means of Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The effects of the reaction temperature, neutralization degree of AA, amount of crosslinker, initiator, Ca-MMT and SH on water absorbencies were systematically investigated. The water absorbencies of the superabsorbent composite synthesized under optimal conditions with a Ca-MMT content of 20 wt% and an SH content of 30 wt% are 615 g g-1 and 45 g g-1 in distilled water and in 0.9 wt% NaCl solution, respectively. The swelling behaviours of the superabsorbent composite in various cationic salt solutions (NaCl, CaCl2 and FeCl3) were also investigated and it was found that at the same saline concentration (> 0.1 mmol L-1), the effect of three cationic salt solutions on the swelling capability has the following order: NaCl < CaCl2 < FeCl3. Here, it is worthy to point out that the water absorbency and swelling behaviours of the developed composite were improved by introducing simultaneously Ca-MMT and SH into PAA-AM network in comparison with that of incorporated single with Ca-MMT or SH.


2014 ◽  
Vol 602-603 ◽  
pp. 947-950
Author(s):  
Zhen Wang ◽  
Hai Yan Chen ◽  
Lin Qiang Gao ◽  
Xin Zou

BiFeO3 nanoparticles were successfully synthesized by a hydrothermal method by a mineralizer (KNO3). Structural characterization was performed by thermal analysis, powder X-ray diffraction (XRD) and scanning electron microscopy (TEM).The results showed that the products were perovskite structure BiFeO3 powders. Optimal conditions for the synthesis of single-phase BiFeO3 ceramics were obtained.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1419
Author(s):  
Pan Chen ◽  
Yameng Sun ◽  
Lei Yang ◽  
Rui Xu ◽  
Yangyong Luo ◽  
...  

Excessive TiO2 in titanomagnetite concentrates (TC) causes unavoidable problems in subsequent smelting. At present, this issue cannot be addressed using traditional mineral processing technology. Herein, a strategy of metallurgy-beneficiation combination to decrease the TiO2 grade in TC before smelting was proposed. Roasting TC with calcium carbonate (CaCO3) together with magnetic separation proved to be a viable strategy. Under optimal conditions (roasting temperature = 1400 °C, CaCO3 ratio = 20%, and magnetic intensity = 0.18 T), iron and titanium was separated efficiently (Fe grade: 56.6 wt.%; Fe recovery: 70 wt.%; TiO2 grade 3 wt.%; TiO2 removal: 84.1 wt.%). X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy analysis were used to study the mechanisms. The results showed that Ti in TC could react with CaO to form CaTiO3, and thermodynamic calculations provided a relevant theoretical basis. In sum, the metallurgy-beneficiation combination strategy was proven as an effective method to decrease unwanted TiO2 in TC.


Sign in / Sign up

Export Citation Format

Share Document