Adsorption of hexavalent chromium on dunite

2011 ◽  
Vol 63 (4) ◽  
pp. 818-824 ◽  
Author(s):  
Antri Demetriou ◽  
Ioannis Pashalidis

The paper presents and discusses the effect of various physicochemical parameters (e.g. pH, ionic strength, Cr(VI) initial concentration, amount of the adsorbent, temperature and contact time between metal ion and adsorbent) on the adsorption efficiency of Cr(VI) on dunite in aqueous solutions under atmospheric conditions. Evaluation of the experimental data shows that dunite presents increased affinity for Cr(VI) over a wide pH range and Cr(VI) concentration, and the experimental data are well fitted by the Kd adsorption model. The relative adsorption is pH dependent and decreases slightly (about 10%) with increasing pH, because of changes in the surface charge of the solid. The effect of the ionic strength is significant (particularly at low pH), indicating the predominance of outer-sphere complexes. Moreover, adsorption experiments at various temperatures, two different pH values (pH 3 and pH 8) and three different ionic strengths (0.0, 0.1 and 1.0 M NaClO4), indicate an endothermic but spontaneous entropy-driven processes.

2009 ◽  
Vol 6 (3) ◽  
pp. 639-650 ◽  
Author(s):  
M. V. Tarase ◽  
W. B. Gurnule ◽  
A. B. Zade

Terpolymer resins (2,4-DHBOF) were synthesized by the condensation of 2,4-dihydroxybenzaldehyde and oxamide with formaldehyde in the presence of hydrochloric acid as catalyst, proved to be selective chelation ion exchange terpolymer resins for certain metals. Chelation ion exchange properties of these polymers were studied for Fe+3, Cu+2, Hg+2, Cd+2, Co+2, Zn+2, Ni+2and Pb+2ions. A batch equilibrium method was employed in the study of the selectivity of the distribution of a given metal ions between the polymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in a media of various ionic strengths. The polymer showed a higher selectivity for Fe+3, Cd+2and Co+2ions than for Cu+2, Hg+2, Zn+2, Ni+2and Pb+2ions.


The six-carbon intermediate of the ribulose 1,5-bisphosphate (RuBP) carboxylase reaction, 2'-carboxy-3-keto-D-arabinitol 1,5-bisphosphate (CKABP), was prepared enzymatically by quenching the reaction with acid after a short time ( ca 12 ms). Over a wide pH range (4-11), GKABP undergoes a slow ( t 1/2 = 1 h), pH-independent decarboxylation. No detectable decomposition of CKABP occurs over a six-week period at — 80 °C. The decarboxylation of CKABP is acid-catalysed and is also catalysed by deactivated enzyme lacking the activator carbamate-divalent metal ion complex. Decarboxylation is accompanied by β-elimination of the C-1 phosphate from the 2,3-enediolate. Under alkaline conditions (pH >11) CKABP undergoes hydrolysis. Non-enzymatic hydrolysis of the intermediate is also accompanied by β-elimination of the C-1 phosphate (presumably from the aci-acid of the upper glycerate 3-phosphate) and the formation of pyruvate. Fully activated enzyme catalyses the complete hydrolysis of CKABP to glycerate 3-phosphate, although enzymic hydrolysis of CKABP is limited by an event not on the direct path of carboxylation. Carbon-13 NMR analysis of [2',3- 13 C]CKABP indicates that it exists in solution predominantly (> 85%) as the C-3 ketone. In contrast, borohydride trapping of CKABP formed from [3- 18 O]RuBP indicates that the intermediate exists on the enzyme predominantly (> 94%) as the hydrated C-3 gem-diol. In solution, the hydration of the C-3 ketone of CKABP proceeds slowly ( k = 2.5 x 10 -3 s -1 ). The enzymatic hydration of CKABP must proceed at least as fast as k cat ( ca. 5 s -1 ) or at least 2000 times faster than the hydration of CKABP in solution.


1984 ◽  
Vol 62 (1) ◽  
pp. 22-26 ◽  
Author(s):  
M. M. Petit-Ramel ◽  
G. Thomas-David ◽  
G. Perichet ◽  
P. Pouyet

The association constants for Hg2+-complexes involving monomeric (TM) and dimeric (TD) forms of thymine are determined by pH-titration measurements made over a wide pH range 2 < pH < 11. In both systems, the experimental data have been analyzed by a pit-mapping method and the concentration distribution of the various complex species is plotted versus a pH gradient.Because of the tendency of Hg2+ to form two bonds in a linear configuration, non-chelate complexes [Hg(TM)+] (log β101 = 10.65) and [Hg(TM)2] (log β102 = 20.70) are formed with the monomer thymine.Photodimers, obtained after irradiation of monomer thymine at 260 nm in frozen water (−10 °C), are the (meso)-cis, syn forms and can be complexed by the Hg2+ ions in [Hg(TD)] (log β101 = 13.55), [HgH−1 (TD)]− (log β1−11 = 6.73), and [HgH−2 (TD)]2− (log β1−21 = 1.69) species. [Hg(TD)] complex shows an absorption spectrum shifting towards 280 nm, whereas the free dimer ligand absorbs lower than 240 nm only. An irradiation at 280 nm provides the formation of the [Hg (TM)2] complex and consequently the breaking of the cyclobutane cycle in the dimer molecule.


1994 ◽  
Vol 6 (3) ◽  
pp. 201-208 ◽  
Author(s):  
Jayesh R Patel ◽  
Dipan H Sutaria ◽  
Magan N Patel

The present paper reports the synthesis and characterization of a copolymer, The copolymer sample was synthesized by Friedel-Crafts polycondensation of 2-hydroxy-4 ethoxypropiophenone with 1,3-propane diol in the presence of polyphosphoric acid catalyst. The copolymer was characterized by elemental analysis, IR spectroscopy and viscosity study, and its number-average molecular weight (M) was determined by non-aqueous titration and found to be 2855 g mol- 1. Chelation ion-exchange properties have also been studied, employing a batch-equilibration method. It was employed to study selectivity of metal ion uptake over a wide pH range and in media of various ionic strengths. The overall rate of metal uptake follows the order UOl + > Fe3 + > Cu2 + > Ni2 +.


2009 ◽  
Vol 6 (3) ◽  
pp. 835-843 ◽  
Author(s):  
Sanjiokumar S. Rahangdale ◽  
Anil B. Zade ◽  
Wasudeo B. Gurnule

The terpolymer resin 2, 4-HABF has been synthesized by the condensation of 2, 4-dihydroxyacetophenone (2, 4-HA) and biuret (B) with formaldehyde (F) in 1:1:2 molar ratios in presence of 2 M hydrochloric acid as catalyst. UV-Visible, IR and proton NMR spectral studies have been carried out to elucidate the structure of the resin. A terpolymer (2, 4-HABF) proved to be a selective chelating ion exchange polymer for certain metals. Chelating ion-exchange properties of this polymer were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+and Pb2+ions. A batch equilibrium method was employed in the study of the selectivity of metal ion uptake involving the measurement of the distribution of a given metal ion between the polymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The polymer showed highest selectivity for Fe3+, Cu2+ions than for Ni2+, Co2+, Zn2+, Cd2+, and Pb2+ions. Study of distribution ratio as a formation of pH indicates that the amount of metal ion taken by resin is increases with the increasing pH of the medium.


2019 ◽  
Vol 42 (1) ◽  
pp. 67-72
Author(s):  
Maxim A. Lutoshkin ◽  
Boris N. Kuznetsov ◽  
Vladimir A. Levdanskiy

Abstract This article focuses on the aqueous complexation between two flavonoids (morin and morinsulfonate) and Pb2+ at constant ionic strength I=0.5 M (NaClO4). The determination of stability constants of ML complexes were performed at wide pH range. Two obtained constants are 14.8 ± 0.1 and 15.2 ± 0.1 logarithmic units for morin and morin-5’-sulfonic acid, respectively. For estimating the thermodynamic stability of the complexes studied, the Def2-SV(P)/DFT/PBE0/SMD method has been used. Different computational models were tested to describe the data obtained. The theoretical values of logK reproduce the experimental parameters within reasonable errors.


Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1426
Author(s):  
Peipei Tang ◽  
M. Monica Giusti

Anthocyanins with catechol (cyanidin) or pyrogallol (delphinidin) moieties on the B-ring are known to chelate metals, resulting in bluing effects, mainly at pH ≤ 6. Metal interaction with petunidin, an O-methylated anthocyanidin, has not been well documented. In this study, we investigated metal chelation of petunidin derivatives in a wide pH range and its effects on color and stability. Purple potato and black goji extracts containing >80% acylated petunidin derivatives (25 μM) were combined with Al3+ or Fe3+ at 0 μM to 1500 μM in buffers of pH 3–10. Small metal ion concentrations triggered bathochromic shifts (up to ~80nm) at an alkaline pH, resulting in vivid blue hues (hab 200°–310°). Fe3+ caused a larger bathochromic shift than Al3+, producing green colors at pH 8-9. Generally, metal ions increased the color stability and half-life of petunidin derivatives in a dose-dependent manner, particularly at pH 8. Petunidin derivative metal chelates produced a wide range of colors with enhanced stability.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7679
Author(s):  
Antonio Gigliuto ◽  
Rosalia Maria Cigala ◽  
Anna Irto ◽  
Maria Rosa Felice ◽  
Alberto Pettignano ◽  
...  

The interactions of dopamine [2-(3,4-Dihydroxyphenyl)ethylamine, (Dop−)] with cadmium(II), copper(II) and uranyl(VI) were studied in NaCl(aq) at different ionic strengths (0 ≤ I/mol dm−3 ≤ 1.0) and temperatures (288.15 ≤ T/K ≤ 318.15). From the elaboration of the experimental data, it was found that the speciation models are featured by species of different stoichiometry and stability. In particular for cadmium, the formation of only MLH, ML and ML2 (M = Cd2+; L = dopamine) species was obtained. For uranyl(VI) (UO22+), the speciation scheme is influenced by the use of UO2(acetate)2 salt as a chemical; in this case, the formation of ML2, MLOH and the ternary MLAc (Ac = acetate) species in a wide pH range was observed. The most complex speciation model was obtained for the interaction of Cu2+ with dopamine; in this case we observed the formation of the following species: ML2, M2L, M2L2, M2L2(OH)2, M2LOH and ML2OH. These speciation models were determined at each ionic strength and temperature investigated. As a further contribution to this kind of investigation, the ternary interactions of dopamine with UO22+/Cd2+ and UO22+/Cu2+ were investigated at I = 0.15 mol dm−3 and T = 298.15K. These systems have different speciation models, with the MM’L and M2M’L2OH [M = UO22+; M’ = Cd2+ or Cu2+, L = dopamine] common species; the species of the mixed Cd2+ containing system have a higher stability with respect the Cu2+ containing one. The dependence on the ionic strength of complex formation constants was modelled by using both an extended Debye–Hückel equation that included the Van’t Hoff term for the calculation of the formation enthalpy change values and the Specific Ion Interaction Theory (SIT). The results highlighted that, in general, the entropy is the driving force of the process. The quantification of the effective sequestering ability of dopamine towards the studied cations was evaluated by using a Boltzmann-type equation and the calculation of pL0.5 parameter. The sequestering ability was quantified at different ionic strengths, temperatures and pHs, and this resulted, in general, that the pL0.5 trend was always: UO22+ > Cu2+ > Cd2+.


2019 ◽  
Vol 64 (10) ◽  
pp. 1091-1104
Author(s):  
O. N. Karaseva ◽  
L. I. Ivanova ◽  
L. Z. Lakshtanov

Strontium adsorption has been studied by the method of acid-base potentiometric titrations at three different temperatures: 25, 50, 75C. The effect of pH, ionic strength, sorbate/sorbent ratio, and temperature on adsorption was investigated. Experimental data were simulated using two various surface complexation models, with two different electrostatic descriptions of the interface: the constant capacitance model (CCM) and the triple-layer model (TLM). Although the both models used are able to account for the acid-base reactions and surface complexation of strontium on birnessite, we consider that the TLM is more applicable for a description of heterophaseous system H+ MnOH Sr2+. Under conditions of low ionic strength and negatively charged surface, Sr2+ ions compete with the electrolyte ions and form outer-sphere complexes along with inner-sphere complexes. Consequently, using the CCM for description of strontium adsorption data could be mathematically satisfactory, but physically senseless. The equilibrium model proposed here consists of the complexes of inner (MnOHSr2+, MnOSr+, MnOSrOH0) and outer types ([MnO Sr2+]+). The corresponding intrinsic equilibrium constants of the formation of these surface complexes were calculated for 25,50, and 75C.


Sign in / Sign up

Export Citation Format

Share Document