A time-course analysis of four full-scale anaerobic digesters in relation to the dynamics of change of their microbial communities

2011 ◽  
Vol 63 (4) ◽  
pp. 769-775 ◽  
Author(s):  
B. F. G. Pycke ◽  
C. Etchebehere ◽  
P. Van de Caveye ◽  
A. Negroni ◽  
W. Verstraete ◽  
...  

This study describes the microbial community richness, -dynamics, and -organization of four full-scale anaerobic digesters during a time-course study of 45 days. The microbial community was analyzed using a Bacteria- and Archaea-targeting 16S rRNA gene-based Terminal-Restriction Fragment Length Polymorphism approach. Clustering analysis separated meso- and thermophilic reactors for both archaeal and bacterial communities. Regardless of the operating temperature, each installation possessed a distinct community profile. For both microbial domains, about 8 dominant terminal-restriction fragments could be observed, with a minimum of 4 and a maximum of 14. The bacterial community organization (a coefficient which describes the specific degree of evenness) showed a factor 2 more variation in the mesophilic reactors, compared with the thermophilic ones. The archaeal community structure of the mesophilic UASB reactor was found to be more stable. The community composition was highly dynamic for Bacteria and Archaea, with a rate of change between 20–50% per 15 days. This study illustrated that microbial communities in full-scale anaerobic digesters are unique to the installation and that community properties are dynamic. Converging complex microbial processes such as anaerobic digestion which rely on a multitude of microbial teams apparently can be highly dynamic.

2017 ◽  
Author(s):  
Rasmus H. Kirkegaard ◽  
Simon J. McIlroy ◽  
Jannie M. Kristensen ◽  
Marta Nierychlo ◽  
Søren M. Karst ◽  
...  

AbstractAnaerobic digestion is widely applied to treat organic waste at wastewater treatment plants. Characterisation of the underlying microbiology represents a source of information to develop strategies for improved operation. To this end, we investigated the microbial community composition of thirty-two full-scale digesters over a six-year period using 16S rRNA gene amplicon sequencing. Sampling of the sludge fed into these systems revealed that several of the most abundant populations were likely inactive and immigrating with the influent. This observation indicates that a failure to consider immigration will interfere with correlation analysis and give an inaccurate picture of the active microbial community. Furthermore, several abundant OTUs could not be classified to genus level with commonly applied taxonomies, making inference of their function unreliable. As such, the existing MiDAS taxonomy was updated to include these abundant phylotypes. The communities of individual plants surveyed were remarkably similar – with only 300 OTUs representing 80% of the total reads across all plants, and 15% of these identified as likely inactive immigrating microbes. By identifying the abundant and active taxa in anaerobic digestion, this study paves the way for targeted characterisation of the process important organisms towards an in-depth understanding of the microbial ecology of these biotechnologically important systems.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0252086
Author(s):  
Kerry L. McNally ◽  
Charles J. Innis ◽  
Adam Kennedy ◽  
Jennifer L. Bowen

Microbial communities of animals play a role in health and disease, including immunocompromised conditions. In the northeastern United States, cold-stunning events often cause endangered Kemp’s ridley turtles (Lepidochelys kempii) to become stranded on beaches in autumn. These sea turtles are admitted to rehabilitation facilities when rescued alive and are presumed immunocompromised secondary to hypothermia. To better understand the role that microbes play in the health of cold-stunned sea turtles, we characterized the oral and cloacal microbiome from Kemp’s ridley turtles at multiple timepoints during rehabilitation, from admission to pre-release, by using Illumina sequencing to analyze the 16S rRNA gene. Microbial communities were distinct between body sites and among turtles that survived and those that died. We found that clinical parameters such as presence of pneumonia or values for various blood analytes did not correlate with oral or cloacal microbial community composition. We also investigated the effect of antibiotics on the microbiome during rehabilitation and prior to release and found that the type of antibiotic altered the microbial community composition, yet overall taxonomic diversity remained the same. The microbiome of cold-stunned Kemp’s ridley turtles gradually changed through the course of rehabilitation with environment, antibiotics, and disease status all playing a role in those changes and ultimately the release status of the turtles.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 887 ◽  
Author(s):  
Gokce Kor-Bicakci ◽  
Emine Ubay-Cokgor ◽  
Cigdem Eskicioglu

The effects of microwave (MW) pretreatment were investigated by six anaerobic digesters operated under thermophilic and mesophilic conditions at high organic loading rates (4.9–5.7 g volatile solids/L/d). The experiments and analyses were mainly designed to reveal the impact of MW pretreatment and digester temperatures on the process stability and microbial community structure by correlating the composition of microbial populations with volatile fatty acid (VFA) concentrations. A slight shift from biogas production (with a reasonable methane content) to VFA accumulation was observed in the thermophilic digesters, especially in the MW-irradiated reactors. Microbial population structure was assessed using a high-throughput sequencing of 16S rRNA gene on the MiSeq platform. Microbial community structure was slightly affected by different MW pretreatment conditions, while substantially affected by the digester temperature. The phylum Bacteroidetes proliferated in the MW-irradiated mesophilic digesters by resisting high-temperature MW (at 160 °C). Hydrogenotrophic methanogenesis (mostly the genus of Methanothermobacter) was found to be a key route of methane production in the thermophilic digesters, whereas aceticlastic methanogenesis (mostly the genus of Methanosaeta) was the main pathway in the mesophilic digesters.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249023
Author(s):  
Munawwar Ali Khan ◽  
Shams Tabrez Khan ◽  
Milred Cedric Sequeira ◽  
Sultan Mohammad Faheem ◽  
Naushad Rais

Understanding the microbial communities in anaerobic digesters, especially bacteria and archaea, is key to its better operation and regulation. Microbial communities in the anaerobic digesters of the Gulf region where climatic conditions and other factors may impact the incoming feed are not documented. Therefore, Archaeal and Bacterial communities of three full-scale anaerobic digesters, namely AD1, AD3, and AD5 of the Jebel Ali Sewage water Treatment Plant (JASTP) were analyzed by Illumina sequencing of 16S rRNA genes. Among bacteria, the most abundant genus was fermentative bacteria Acetobacteroides (Blvii28). Other predominant bacterial genera in the digesters included thermophilic bacteria (Fervidobacterium and Coprothermobacter) and halophilic bacteria like Haloterrigena and Sediminibacter. This can be correlated with the climatic condition in Dubai, where the bacteria in the incoming feed may be thermophilic or halophilic as much of the water used in the country is desalinated seawater. The predominant Archaea include mainly the members of the phyla Euryarchaeota and Crenarchaeota belonging to the genus Methanocorpusculum, Metallosphaera, Methanocella, and Methanococcus. The highest population of Methanocorpusculum (more than 50% of total Archaea), and other hydrogenotrophic archaea, is in agreement with the high population of bacterial genera Acetobacteroides (Blvii28) and Fervidobacterium, capable of fermenting organic substrates into acetate and H2. Coprothermobacter, which is known to improve protein degradation by establishing syntrophy with hydrogenotrophic archaea, is also one of the digesters’ dominant genera. The results suggest that the microbial community in three full-scale anaerobic digesters is different. To best of our knowledge this is the first detailed report from the UAE.


Data ◽  
2021 ◽  
Vol 6 (5) ◽  
pp. 44
Author(s):  
Jae-Hyun Lim ◽  
Il-Nam Kim

Marine bacteria are known to play significant roles in marine biogeochemical cycles regarding the decomposition of organic matter. Despite the increasing attention paid to the study of marine bacteria, research has been too limited to fully elucidate the complex interaction between marine bacterial communities and environmental variables. Jinhae Bay, the study area in this work, is the most anthropogenically eutrophied coastal bay in South Korea, and while its physical and biogeochemical characteristics are well described, less is known about the associated changes in microbial communities. In the present study, we reconstructed a metagenomics data based on the 16S rRNA gene to investigate temporal and vertical changes in microbial communities at three depths (surface, middle, and bottom) during a seven-month period from June to December 2016 at one sampling site (J1) in Jinhae Bay. Of all the bacterial data, Proteobacteria, Bacteroidetes, and Cyanobacteria were predominant from June to November, whereas Firmicutes were predominant in December, especially at the middle and bottom depths. These results show that the composition of the microbial community is strongly associated with temporal changes. Furthermore, the community compositions were markedly different between the surface, middle, and bottom depths in summer, when water column stratification and bottom water hypoxia (low dissolved oxygen level) were strongly developed. Metagenomics data contribute to improving our understanding of important relationships between environmental characteristics and microbial community change in eutrophication-induced and deoxygenated coastal areas.


2013 ◽  
Vol 80 (1) ◽  
pp. 177-183 ◽  
Author(s):  
Lavane Kim ◽  
Eulyn Pagaling ◽  
Yi Y. Zuo ◽  
Tao Yan

ABSTRACTThe impact of substratum surface property change on biofilm community structure was investigated using laboratory biological aerated filter (BAF) reactors and molecular microbial community analysis. Two substratum surfaces that differed in surface properties were created via surface coating and used to develop biofilms in test (modified surface) and control (original surface) BAF reactors. Microbial community analysis by 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis (DGGE) showed that the surface property change consistently resulted in distinct profiles of microbial populations during replicate reactor start-ups. Pyrosequencing of the bar-coded 16S rRNA gene amplicons surveyed more than 90% of the microbial diversity in the microbial communities and identified 72 unique bacterial species within 19 bacterial orders. Among the 19 orders of bacteria detected,BurkholderialesandRhodocyclalesof theBetaproteobacteriaclass were numerically dominant and accounted for 90.5 to 97.4% of the sequence reads, and their relative abundances in the test and control BAF reactors were different in consistent patterns during the two reactor start-ups. Three of the five dominant bacterial species also showed consistent relative abundance changes between the test and control BAF reactors. The different biofilm microbial communities led to different treatment efficiencies, with consistently higher total organic carbon (TOC) removal in the test reactor than in the control reactor. Further understanding of how surface properties affect biofilm microbial communities and functional performance would enable the rational design of new generations of substrata for the improvement of biofilm-based biological treatment processes.


2017 ◽  
Vol 43 (3) ◽  
pp. 53-60 ◽  
Author(s):  
Piotr Świątczak ◽  
Agnieszka Cydzik-Kwiatkowska ◽  
Paulina Rusanowska

AbstractAnaerobic digestion is an important technology for the bio-based economy. The stability of the process is crucial for its successful implementation and depends on the structure and functional stability of the microbial community. In this study, the total microbial community was analyzed during mesophilic fermentation of sewage sludge in full-scale digesters.The digesters operated at 34–35°C, and a mixture of primary and excess sludge at a ratio of 2:1 was added to the digesters at 550 m3/d, for a sludge load of 0.054 m3/(m3·d). The amount and composition of biogas were determined. The microbial structure of the biomass from the digesters was investigated with use of next-generation sequencing.The percentage of methanogens in the biomass reached 21%, resulting in high quality biogas (over 61% methane content). The abundance of syntrophic bacteria was 4.47%, and stable methane production occurred at a Methanomicrobia to Synergistia ratio of 4.6:1.0. The two most numerous genera of methanogens (about 11% total) wereMethanosaetaandMethanolinea, indicating that, at the low substrate loading in the digester, the acetoclastic and hydrogenotrophic paths of methane production were equally important. The high abundance of the orderBacteroidetes, including the classCytophagia(11.6% of all sequences), indicated the high potential of the biomass for efficient degradation of lignocellulitic substances, and for degradation of protein and amino acids to acetate and ammonia.This study sheds light on the ecology of microbial groups that are involved in mesophilic fermentation in mature, stably-performing microbiota in full-scale reactors fed with sewage sludge under low substrate loading.


2018 ◽  
Vol 17 (1) ◽  
pp. 37-49 ◽  
Author(s):  
Abdolrazagh Hashemi Shahraki ◽  
Subba Rao Chaganti ◽  
Daniel Heath

Abstract The characterization of microbial community dynamics using genomic methods is rapidly expanding, impacting many fields including medical, ecological, and environmental research and applications. One of the biggest challenges for such studies is the isolation of environmental DNA (eDNA) from a variety of samples, diverse microbes, and widely variable community compositions. The current study developed environmentally friendly, user safe, economical, and high throughput eDNA extraction methods for mixed aquatic microbial communities and tested them using 16 s rRNA gene meta-barcoding. Five different lysis buffers including (1) cetyltrimethylammonium bromide (CTAB), (2) digestion buffer (DB), (3) guanidinium isothiocyanate (GITC), (4) sucrose lysis (SL), and (5) SL-CTAB, coupled with four different purification methods: (1) phenol-chloroform-isoamyl alcohol (PCI), (2) magnetic Bead-Robotic, (3) magnetic Bead-Manual, and (4) membrane-filtration were tested for their efficacy in extracting eDNA from recreational freshwater samples. Results indicated that the CTAB-PCI and SL-Bead-Robotic methods yielded the highest genomic eDNA concentrations and succeeded in detecting the core microbial community including the rare microbes. However, our study recommends the SL-Bead-Robotic eDNA extraction protocol because this method is safe, environmentally friendly, rapid, high-throughput and inexpensive.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Rasmus H. Kirkegaard ◽  
Simon J. McIlroy ◽  
Jannie M. Kristensen ◽  
Marta Nierychlo ◽  
Søren M. Karst ◽  
...  

2019 ◽  
Vol 85 (21) ◽  
Author(s):  
Maria Fernanda Campa ◽  
Stephen M. Techtmann ◽  
Mallory P. Ladd ◽  
Jun Yan ◽  
Megan Patterson ◽  
...  

ABSTRACT Production of unconventional oil and gas continues to rise, but the effects of high-density hydraulic fracturing (HF) activity near aquatic ecosystems are not fully understood. A commonly used biocide in HF, 2,2-dibromo-3-nitrilopropionamide (DBNPA), was studied in microcosms of HF-impacted (HF+) versus HF-unimpacted (HF−) surface water streams to (i) compare the microbial community response, (ii) investigate DBNPA degradation products based on past HF exposure, and (iii) compare the microbial community response differences and similarities between the HF biocides DBNPA and glutaraldehyde. The microbial community responded to DBNPA differently in HF-impacted versus HF-unimpacted microcosms in terms of the number of 16S rRNA gene copies quantified, alpha and beta diversity, and differential abundance analyses of microbial community composition through time. The differences in microbial community changes affected degradation dynamics. HF-impacted microbial communities were more sensitive to DBNPA, causing the biocide and by-products of the degradation to persist for longer than in HF-unimpacted microcosms. A total of 17 DBNPA by-products were detected, many of them not widely known as DBNPA by-products. Many of the brominated by-products detected that are believed to be uncharacterized may pose environmental and health impacts. Similar taxa were able to tolerate glutaraldehyde and DBNPA; however, DBNPA was not as effective for microbial control, as indicated by a smaller overall decrease of 16S rRNA gene copies/ml after exposure to the biocide, and a more diverse set of taxa was able to tolerate it. These findings suggest that past HF activity in streams can affect the microbial community response to environmental perturbation such as that caused by the biocide DBNPA. IMPORTANCE Unconventional oil and gas activity can affect pH, total organic carbon, and microbial communities in surface water, altering their ability to respond to new environmental and/or anthropogenic perturbations. These findings demonstrate that 2,2-dibromo-3-nitrilopropionamide (DBNPA), a common hydraulic fracturing (HF) biocide, affects microbial communities differently as a consequence of past HF exposure, persisting longer in HF-impacted (HF+) waters. These findings also demonstrate that DBNPA has low efficacy in environmental microbial communities regardless of HF impact. These findings are of interest, as understanding microbial responses is key for formulating remediation strategies in unconventional oil and gas (UOG)-impacted environments. Moreover, some DBNPA degradation by-products are even more toxic and recalcitrant than DBNPA itself, and this work identifies novel brominated degradation by-products formed.


Sign in / Sign up

Export Citation Format

Share Document