Snowmelt and its role in the hydrologic and nutrient budgets of prairie streams

2011 ◽  
Vol 64 (8) ◽  
pp. 1590-1596 ◽  
Author(s):  
Julie Corriveau ◽  
Patricia A. Chambers ◽  
Adam G. Yates ◽  
Joseph M. Culp

Small watersheds in the Canadian Prairies are characterized by seasonally disconnected hydrologic networks whereby stream channels are hydrologically connected during snowmelt but have disconnected reaches throughout the remainder of the year. Snowmelt is the most significant hydrological event in the Canadian Prairies, yet few studies have investigated the role of snowmelt in the nutrient budget of prairie streams. We quantified hydrologic and nutrient dynamics during snowmelt for ten agricultural subwatersheds distributed along a gradient of human activity in the Red River Valley, Canada, to evaluate the timing of nitrogen (N) and phosphorus (P) export. Elevated concentrations of total P (TP) and total N (TN) were observed during the snowmelt peak, with maximum concentrations reaching 3.23 mg TP L−1 and 18.50 mg TN L−1. Dissolved P and N dominated the total nutrient pool throughout snowmelt, likely due to reduced erosion and sediment transport resulting from the combination of the flat topography, frozen soil and stream banks, and gradual snow cover melt. Significant correlations were observed between snowmelt N load (r = 0.91; p < 0.05) and both agricultural land cover and fertilizer usage, with a weaker correlation between snowmelt P load (r = 0.81; p < 0.05) and agricultural area. Our results showed that snowmelt plays a key role in nutrient export to prairie aquatic ecosystems and this may have serious impacts on downstream ecosystems. Land use management practices need to consider the snowmelt period to control nutrient loads to Lake Winnipeg and other waterbodies in the Great Plains.

2015 ◽  
Vol 19 (2) ◽  
pp. 75 ◽  
Author(s):  
Rotimi Rufus Ipinmoroti ◽  
Joseph Sunday Ogeh

A  study  was  conducted  to  assess  nutrient  dynamics  of  soils  under  old  and  young  cocoa,  coffee  and  cashew plantations and the leaf nutrient contents of the crops at Uhonmora, Edo State, Nigeria for proper cultural and soil fertility management of the plantations. Soil and crop leaf samples were collected from each plantation using a random sampling technique. The samples were analyzed using standard procedures for sand, silt, clay, pH (H2O), electrical conductivity (EC), total N, available P, K, Ca, Mg, Na, and Effective Cation Exchange Capacity (ECEC). Leaf samples were analyzed for N, P, K, Ca, Mg and Na. Data were compared with the corresponding soil and foliar critical nutrient values for each crop. Results indicated that the soils were texturally sandy clay loam and acidic. The soils varied in their nutrient contents, with soil P for the old cocoa, young coffee and cashew plantations far below critical values. The young cashew plot was low in N content but adequate for other plots. However, the soil ECEC increased with the increasing of calcium contents. Leaf N was below critical for all the crops. Leaf K was low for cocoa and coffee plants, leaf Ca was low for the young cashew plants, while leaf Mg was low for the young cocoa and old cashew. The high soil Mg/K ratio of 8.7- 22.3 as against the established value of 2.0 might have resulted in gross nutrient imbalance which must have affected the absorption and utilization of other nutrients. Hence, adequate soil N did not translate the same availability to the crops. The ECEC showed that the soil needs to be improved upon for sustainable  productivity.  Soil  nutrient  content  variation  across  the  plantations  with  age  of  establishment  will necessitate the need for consistent routine soil nutrient assessment for proper and balanced soil nutrient supply to the  crops,  for  healthy  crop  growth  and  optimum  yield.    Management  practices  of  soil  surface  mulching  using organic wastes and cover crops under compatible cropping systems are needed for successful plot establishment and better growth performance of the young seedlings.Key words: Nutrient dynamics, plantation crops, rehabilitation, soil fertility management [How to Cite: Rotimi RI and JS Ogeh. 2014. Soil Nutrient Dynamics under Old and Young Cocoa, Coffee and Cashew Plantations at Uhonmora, Edo State, Nigeria. J Trop Soils 19(2): 85-90. Doi: 10.5400/jts.2014.19.2.85] [Permalink/DOI: www.dx.doi.org/10.5400/jts.2014.19.2.85]     


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 498e-498
Author(s):  
S. Paramasivam ◽  
A.K. Alva

For perennial crop production conditions, major portion of nutrient removal from the soil-tree system is that in harvested fruits. Nitrogen in the fruits was calculated for 22-year-old `Hamlin' orange (Citrus sinensis) trees on Cleopatra mandarin (Citrus reticulata) rootstock, grown in a Tavares fine sand (hyperthermic, uncoated, Typic Quartzipsamments) that received various N rates (112, 168, 224, and 280 kg N/ha per year) as either i) broadcast of dry granular form (DGF; four applications/year), or ii) fertigation (FRT; 15 applications/year). Total N in the fruits (mean across 4 years) varied from 82 to 110 and 89 to 111 kg N/ha per year for the DGF and FRT sources, respectively. Proportion of N in the fruits in relation to N applied decreased from 74% to 39% for the DGF and from 80% to 40% for the FRT treatments. High percentage of N removal in the fruits in relation to total N applied at low N rates indicate that trees may be depleting the tree reserve for maintaining fruit production. This was evident, to some extent, by the low leaf N concentration at the low N treatments. Furthermore, canopy density was also lower in the low N trees compared to those that received higher N rates.


1999 ◽  
Vol 39 (12) ◽  
pp. 257-264 ◽  
Author(s):  
Hans E. Andersen ◽  
Brian Kronvang ◽  
Søren E. Larsen

An empirical leaching model was applied to data on agricultural practices at the field level within 6 small Danish agricultural catchments in order to document any changes in nitrogen (N) leaching from the root zone during the period 1989-96. The model calculations performed at normal climate revealed an average reduction in N-leaching that amounted to 30% in the loamy catchments and 9% in the sandy catchments. The reductions in N leaching could be ascribed to several improvements in agricultural practices during the study period: (i) regulations on livestock density; (ii) regulations on the utilisation of animal manure; (iii) regulations concerning application practices for manure. The average annual total N-loss from agricultural areas to surface water constituted only 54% of the annual average N leached from the root zone in the three loamy catchments and 17% in the three sandy catchments. Thus, subsurface N-removal processes are capable of removing large amounts of N leached from agricultural land. An empirical model for the annual diffuse N-loss to streams from small catchments is presented. The model predicts annual N-loss as a function of the average annual use of mineral fertiliser and manure in the catchment and the total annual runoff from the unsaturated zone.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1064
Author(s):  
Shuiwang Duan ◽  
Kamaljit Banger ◽  
Gurpal S. Toor

Florida has a long history of phosphate-mining, but less is known about how mining affects nutrient exports to coastal waters. Here, we investigated the transport of inorganic and organic forms of nitrogen (N) and phosphorus (P) over 23 sampling events during a wet season (June–September) in primary tributaries and mainstem of Alafia River that drains into the Tampa Bay Estuary. Results showed that a tributary draining the largest phosphate-mining area (South Prong) had less flashy peaks, and nutrients were more evenly exported relative to an adjacent tributary (North Prong), highlighting the effectiveness of the mining reclamation on stream hydrology. Tributaries draining > 10% phosphate-mining area had significantly higher specific conductance (SC), pH, dissolved reactive P (DRP), and total P (TP) than tributaries without phosphate-mining. Further, mean SC, pH, and particulate reactive P were positively correlated with the percent phosphate-mining area. As phosphate-mining occurred in the upper part of the watershed, the SC, pH, DRP, and TP concentrations increased downstream along the mainstem. For example, the upper watershed contributed 91% of TP compared to 59% water discharge to the Alafia River. In contrast to P, the highest concentrations of total N (TN), especially nitrate + nitrite (NOx–N) occurred in agricultural tributaries, where the mean NOx–N was positively correlated with the percent agricultural land. Dissolved organic N was dominant in all streamwaters and showed minor variability across sites. As a result of N depletion and P enrichment, the phosphate-mining tributaries had significantly lower molar ratios of TN:TP and NOx–N:DRP than other tributaries. Bi-weekly monitoring data showed consistent increases in SC and DRP and a decrease in NOx–N at the South Prong tributary (highest phosphate-mining area) throughout the wet season, and different responses of dissolved inorganic nutrients (negative) and particulate nutrients (positive) to water discharge. We conclude that (1) watersheds with active and reclaimed phosphate-mining and agriculture lands are important sources of streamwater P and N, respectively, and (2) elevated P inputs from the phosphate-mining areas altered the N:P ratios in streamwaters of the Alafia River.


2021 ◽  
Vol 13 (4) ◽  
pp. 1991
Author(s):  
Silvia Stanchi ◽  
Odoardo Zecca ◽  
Csilla Hudek ◽  
Emanuele Pintaldi ◽  
Davide Viglietti ◽  
...  

We studied the effects of three soil management approaches (permanent grassing, chemical weeding, and buffer strips), and the additional impact of tractor passage on soil erosion in a sloping vineyard located in the inner part of Aosta Valley (N-W Italian Alps). The vineyard rows were equipped with a sediment collection system with channels and barrel tanks. A total of 12 events with sediment production were observed across 6 years, and the collected sediments were weighted and analyzed. Average erosion rates ranged from negligible (mainly in grassed rows) to 1.1 t ha−1 per event (after weeding). The most erosive event occurred in July 2015, with a total rainfall of 32.2 mm, of which 20.1 were recorded in 1 h. Despite the limited number of erosive events observed, and the low measured erosion rates, permanent grassing reduced soil erosion considerably with respect to weeding; buffering had a comparable effect to grassing. The tractor passage, independent of the soil management approaches adopted, visibly accelerated the erosion process. The collected sediments were highly enriched in organic C, total N, and fine size fractions, indicating a potential loss of fertility over time. Despite the measured erosion rates being low over the experiment’s duration, more severe events are well documented in the recent past, and the number of intense storms is likely to increase due to climate change. Thus, the potential effects of erosion in the medium and long term need to be limited to a minimum rate of soil loss. Our experiment helped to compare soil losses by erosion under different soil management practices, including permanent grassing, i.e., a nature-based erosion mitigation measure. The results of the research can provide useful indications for planners and practitioners in similar regions, for sustainable, cross-sectoral soil management, and the enhancement of soil ecosystem services.


2021 ◽  
Author(s):  
Sylvia Vetter ◽  
Michael Martin ◽  
Pete Smith

<p>Reducing greenhouse gas (GHG) emissions in to the atmosphere to limit global warming is the big challenge of the coming decades. The focus lies on negative emission technologies to remove GHGs from the atmosphere from different sectors. Agriculture produces around a quarter of all the anthropogenic GHGs globally (including land use change and afforestation). Reducing these net emissions can be achieved through techniques that increase the soil organic carbon (SOC) stocks. These techniques include improved management practices in agriculture and grassland systems, which increase the organic carbon (C) input or reduce soil disturbances. The C sequestration potential differs among soils depending on climate, soil properties and management, with the highest potential for poor soils (SOC stock farthest from saturation).</p><p>Modelling can be used to estimate the technical potential to sequester C of agricultural land under different mitigation practices for the next decades under different climate scenarios. The ECOSSE model was developed to simulate soil C dynamics and GHG emissions in mineral and organic soils. A spatial version of the model (GlobalECOSSE) was adapted to simulate agricultural soils around the world to calculate the SOC change under changing management and climate.</p><p>Practices like different tillage management, crop rotations and residue incorporation showed regional differences and the importance of adapting mitigation practices under an increased changing climate. A fast adoption of practices that increase SOC has its own challenges, as the potential to sequester C is high until the soil reached a new C equilibrium. Therefore, the potential to use soil C sequestration to reduce overall GHG emissions is limited. The results showed a high potential to sequester C until 2050 but much lower rates in the second half of the century, highlighting the importance of using soil C sequestration in the coming decades to reach net zero by 2050.</p>


2021 ◽  
Author(s):  
Darija Bilandžija ◽  
Marija Galić ◽  
Željka Zgorelec

<p>In order to mitigate climate change and reduce the anthropogenic greenhouse gas (GHG) emissions, the Kyoto protocol has been adopted in 1997 and the Paris Agreement entered into force in 2016. The Paris Agreement have ratified 190 out of 197 Parties of the United Nations Framework Convention on Climate Change (UNFCCC) and Croatia is one of them as well. Each Party has obliged regularly to submit the national inventory report (NIR) providing the information on the national anthropogenic GHG emissions by sources and removals by sinks to the UNFCCC. Reporting under the NIR is divided into six categories / sectors, and one of them is land use, land use change and forestry (LULUCF) sector, where an issue of uncertainty estimates on carbon emissions and removals occurs. As soil respiration represents the second-largest terrestrial carbon flux, the national studies on soil respiration can reduce the uncertainty and improve the estimation of country-level carbon fluxes. Due to the omission of national data, the members of the University of Zagreb Faculty of Agriculture, Department of General Agronomy have started to study soil respiration rates in 2012, and since then many different studies on soil respiration under different agricultural land uses (i.e. annual crops, energy crop and vineyard), management practices (i.e. tillage and fertilization) and climate conditions (i.e. continental and mediterranean) in Croatia have been conducted. The obtained site specific results on field measurements of soil carbon dioxide concentrations by <em>in situ</em> closed static chamber method will be presented in this paper.</p>


2021 ◽  
Author(s):  
Russell Adams ◽  
Donnacha Doody

<p>Northern Ireland has been somewhat overlooked in terms of water quality modelling in the past. Many of its catchments have consistently failed to meet Water Framework Directive targets especially due to high levels of dissolved nutrients and poor ecological status. A catchment based modelling study to address this issue has not been undertaken here previously and the approach described here uses two water quality models to achieve this aim. The objectives of the modelling were firstly to identify the total load reductions (in terms of Phosphorus (P)) required to reduce in-stream loadings sufficiently for concentrations of soluble reactive P (SRP) to be reduced to achieve the WFD “Good” status levels, and secondly to split these loadings into diffuse and point components. The third objective was to identify the most likely flow pathways for the transport of the diffuse component of P to the watercourses particularly for the agricultural (mostly intensive grassland farming) land use which dominates in almost all NI catchments.</p><p>The first model applied is the Source Load Apportionment Model (SLAM) developed by the Irish EPA. This model provides a large-scale assessment of the point and diffuse load components across catchments where multiple pressures are occurring. The second model us the Catchment Runoff Flux Assessment Tool (CRAFT) which is able to back-calculate nutrient loads associated with three major flow pathways. SLAM is a static model which uses averaged loadings from diffuse agriculture and non-agricultural land uses, and point sources (where information can be obtained from various sources) to calculate N and P exports. For P, the agricultural diffuse load component uses an enhanced version of the export coefficient approach based on combining the sources of P from applied nutrients (slurry and fertiliser) and soil P. A modelling tool allows the user to evaluate load reduction scenarios where one or several components of P (both point and diffuse) are adjusted downwards to achieve the catchment’s required load reduction. The CRAFT model works on a dynamic (daily) modelling scale and has simulated sub-catchments where the SLAM model has identified the need for significant load reductions. It identifies the different reductions (P export) that are required for each flow pathway, which will then inform on the type of additional measures (e.g. sediment traps, riparian buffer strips and wetlands) that may also be required.</p><p>The initial aim of this study is to complete a pilot application to the trans-border (UK and ROI) Blackwater catchment (1360 km<sup>2</sup>). Through a review of alternative modelling options for the whole area of NI, an assessment of whether this approach is suitable for application to the entire territory can be made.</p>


2021 ◽  
Vol 61 (7) ◽  
pp. 690
Author(s):  
Gisele M. Fagundes ◽  
Gabriela Benetel ◽  
Mateus M. Carriero ◽  
Ricardo L. M. Sousa ◽  
Kelly C. Santos ◽  
...  

Context Plant bioactive compounds such as condensed tannins (CT) are seen as an alternative to rumen chemical modulators to mitigate rumen methanogenesis in livestock; however, the presence of CT in ruminant faeces also produces a series of changes in soil microbiomes. Little is known about these effects on soil nutrient dynamics. Therefore, whether CT affect the decomposition process of faecal organic matter, delaying it and consequently increasing soil carbon and nitrogen (N) sequestration, merits study. Aims Our study investigated the effects of a diet rich in CT on bovine faecal composition and on subsequent dynamics of a soil microbial population. Methods Faeces were analysed from cattle fed the following diets: control (no CT), 1.25% CT, 2.5% CT. In a greenhouse pot experiment over a period of 60 days, faeces from the three dietary treatments were applied to soil and the soil microbial populations were measured against a control with no faeces applied. Key results The presence of CT increased the excretion of faecal N and of neutral and acid detergent fibres and lignin, and the higher rate of CT reduced the rate of soil organic matter decomposition. Treatments with dietary CT resulted in greater total numbers of bacteria in the soil than in the no-faeces control and stimulated numbers of Actinobacteria, Proteobacteria (α-Proteobacteria) and Firmicutes. Conclusions The study showed that CT alter N recycling and other nutrient inputs in a soil–animal ecosystem by increasing faecal N inputs, delaying organic matter breakdown, and changing soil microbial dynamics. Implications The presence of CT in ruminant diets can be beneficial to the soil environment. Sustainable management practices should be encouraged by providing ruminants with feed including high-CT legumes in silvopastoral systems.


Sign in / Sign up

Export Citation Format

Share Document