A risk-based approach to improve monitoring and performance of remote waste stabilisation ponds

2012 ◽  
Vol 66 (8) ◽  
pp. 1735-1742 ◽  
Author(s):  
D. G. Sweeney ◽  
J. Louey-Gung ◽  
A. Dysart

A cost-effective risk-based system was developed for assessing the performance and potential environmental impact of a large number of geographically dispersed pond systems, where cost and logistical issues prevent direct monitoring. In the process, a range of risk functions were calculated for each site to take into account pond performance, receiving environment, influent quality, surrounding land use and system size. Pond performance was estimated using traditional design equations, including Monte Carlo analysis to account for uncertainty in boundary conditions. The calculation of combined risk functions for all systems enabled the quantitative ranking of systems, which can be used to prioritise limited sampling resources.

Author(s):  
Zane L. Berge ◽  
Donna L. Smith

As businesses expand to become more globally competitive, their needs grow to train geographically dispersed employees in a cost- effective manner. What must businesses do to implement distance education? An important role of the training and performance specialists in business is to help management solve complex problems within an organization. Still, distance education is usually not accomplished by a single group within an organization, nor through a single process. To change the way training is done, performance managers must use what is known about change management, strategic planning and project management in order to successfully implement technology-enhanced learning globally. One of the methods being used increasingly in the workplace is distance training.


Author(s):  
Zane L. Berge ◽  
Donna L. Smith

As businesses expand to become more globally competitive, their needs grow to train geographically dispersed employees in a cost- effective manner. What must businesses do to implement distance education? An important role of the training and performance specialists in business is to help management solve complex problems within an organization. Still, distance education is usually not accomplished by a single group within an organization, nor through a single process. To change the way training is done, performance managers must use what is known about change management, strategic planning and project management in order to successfully implement technology-enhanced learning globally. One of the methods being used increasingly in the workplace is distance training.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1437
Author(s):  
Jing Yi Ong ◽  
Andrew Pike ◽  
Ling Ling Tan

The presence of mycotoxins in foodstuffs and feedstuffs is a serious concern for human health. The detection of mycotoxins is therefore necessary as a preventive action to avoid the harmful contamination of foodstuffs and animal feed. In comparison with the considerable expense of treating contaminated foodstuffs, early detection is a cost-effective way to ensure food safety. The high affinity of bio-recognition molecules to mycotoxins has led to the development of affinity columns for sample pre-treatment and the development of biosensors for the quantitative analysis of mycotoxins. Aptamers are a very attractive class of biological receptors that are currently in great demand for the development of new biosensors. In this review, the improvement in the materials and methodology, and the working principles and performance of both conventional and recently developed methods are discussed. The key features and applications of the fundamental recognition elements, such as antibodies and aptamers are addressed. Recent advances in aptasensors that are based on different electrochemical (EC) transducers are reviewed in detail, especially from the perspective of the diagnostic mechanism; in addition, a brief introduction of some commercially available mycotoxin detection kits is provided.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1342
Author(s):  
Borja Nogales ◽  
Miguel Silva ◽  
Ivan Vidal ◽  
Miguel Luís ◽  
Francisco Valera ◽  
...  

5G communications have become an enabler for the creation of new and more complex networking scenarios, bringing together different vertical ecosystems. Such behavior has been fostered by the network function virtualization (NFV) concept, where the orchestration and virtualization capabilities allow the possibility of dynamically supplying network resources according to its needs. Nevertheless, the integration and performance of heterogeneous network environments, each one supported by a different provider, and with specific characteristics and requirements, in a single NFV framework is not straightforward. In this work we propose an NFV-based framework capable of supporting the flexible, cost-effective deployment of vertical services, through the integration of two distinguished mobile environments and their networks: small sized unmanned aerial vehicles (SUAVs), supporting a flying ad hoc network (FANET) and vehicles, promoting a vehicular ad hoc network (VANET). In this context, a use case involving the public safety vertical will be used as an illustrative example to showcase the potential of this framework. This work also includes the technical implementation details of the framework proposed, allowing to analyse and discuss the delays on the network services deployment process. The results show that the deployment times can be significantly reduced through a distributed VNF configuration function based on the publish–subscribe model.


Author(s):  
Kala Meah ◽  
Steven Fletcher ◽  
Yu Wan ◽  
Sadrul Ula

Many parts of the western US is rural in nature and consequently do not have electrical distribution lines in many parts of farms and ranches. Distribution line extension costs can run from $15,000 to $25,000 per mile, thereby making availability of electricity to small water pumping projects economically unattractive. Solar photo-voltaic (PV) powered water pumping is more cost effective in these small scale applications. Many western states including Wyoming are passing through fifth year of drought with the consequent shortages of water for many applications. Wyoming State Climatologist is predicting a possible 5–10 years of drought. Drought impacts the surface water right away, while it takes much longer to impact the underground aquifers. To mitigate the effect on the livestock and wildlife, Wyoming Governor Dave Freudenthal initiated a solar water pumping initiative in cooperation with the University of Wyoming, County Conservation Districts, Rural Electric Cooperatives, and ranching organizations. Solar water pumping has several advantages over traditional systems; for example, diesel or propane engines require not only expensive fuels, they also create noise and air pollution in many remote pristine areas. Solar systems are environment friendly, low maintenance and have no fuel cost. In this paper the design, installation and performance monitoring of the solar system for small scale remote water pumping will be presented.


Author(s):  
Will Judge ◽  
Georges Kipouros

The production of aluminum alloys through powder metallurgy (PM) processes allows for the manufacture of net- or near-net-shape components in a cost-effective and sustainable manner. The high reactivity of aluminum metal, however, complicates PM processing, and special attention must be given to certain steps during production, particularly sintering. PM processing conditions strongly affect the structure and porosity of aluminum PM alloys, which ultimately determine their material properties and performance. In this article, the fundamental aspects of the commercial production of aluminum PM alloys are presented, along with the effects of production conditions on the structure and porosity of aluminum PM alloys. The properties and performance of aluminum PM alloys are then analyzed and interpreted with respect to their structure and porosity.


Stroke ◽  
2016 ◽  
Vol 47 (suppl_1) ◽  
Author(s):  
Olli S Mattila ◽  
Heini Harve ◽  
Saana Pihlasviita ◽  
Juhani Ritvonen ◽  
Gerli Sibolt ◽  
...  

Background and purpose: Blood-based biomarkers could enable early and cost-effective diagnostics for acute stroke patients in the prehospital setting to support early initiation of treatments. However, large prehospital sample sets required for biomarker discovery and validation are missing, and the feasibility of large-scale blood sampling by emergency medical services (EMS) has not been determined. We set out to establish extensive prehospital blood sampling of thrombolysis candidates in the catchment area of our comprehensive stroke center, with a 1.5 million population base. Methods: EMS personnel were trained to collect prehospital blood samples using a cannula-adapter technique. Time delays, sample quality and performance bottlenecks were investigated between May 20, 2013 and May 19, 2014. Results: Prehospital blood sampling and study recruitment were successfully performed in 430 thrombolysis candidates, of which 55.3% were admitted outside office hours. The median (interquartile range) emergency call to prehospital sample time was 33 minutes (25-41), and the median time from reported symptom onset or wake-up to prehospital sample was 53 minutes (38-85; n=394). Prehospital sampling was performed 31 minutes (25-42) earlier than admission blood sampling, and 37 minutes (30-47) earlier than admission neuroimaging. Quality control data from 25 participating EMS units indicated a 4-minute increase in median transport time (from arrival on-scene to hospital door) for study patients compared to patients of the preceding year. The hemolysis rate in serum and plasma samples was 6.5% and 9.3% for EMS samples, and 0.7% and 1.6% for admission samples collected with venipuncture. Conclusions: Prehospital biomarker sampling is feasible in standard EMS units and provides a median timesaving of over 30 minutes to obtain first blood samples. Large biobanks of prehospital blood samples will facilitate development of ultra-acute stroke biomarkers.


2021 ◽  
Vol 21 (8) ◽  
pp. 4400-4405
Author(s):  
Junyeop Lee ◽  
Nam Gon Do ◽  
Dong Hyuk Jeong ◽  
Sae-Wan Kim ◽  
Maeum Han ◽  
...  

Carbon monoxide (CO) is an odorless, colorless, tasteless, extremely flammable, and highly toxic gas. It is produced when there is insufficient oxygen supply during the combustion of carbon to produce carbon dioxide (CO2). CO is produced from operating engines, stoves, or furnaces. CO poisoning occurs when CO accumulates in the bloodstream and can result in severe tissue damage or even death. Many types of CO sensors have been reported, including electrochemical, semiconductor metal-oxide, catalytic combustion, thermal conductivity, and infrared absorption-type for the detection of CO. However, despite their excellent selectivity and sensitivity, issues such as complexity, power consumption, and calibration limit their applications. In this study, a fabricbased colorimetric CO sensor is proposed to address these issues. Potassium disulfitopalladate (II) (K2Pd(SO3)2) is dyed on a polyester fabric as a sensing material for selective CO detection. The sensing characteristics and performance are investigated using optical instruments such as RGB sensor and spectrometer. The sensor shows immediate color change when exposed to CO at a concentration that is even lower than 20 ppm before 2 min. The fast response time of the sensor is attributed to its high porosity to react with CO. This easy-to-fabricate and cost-effective sensor can detect and prevent the leakage of CO simultaneously with high sensitivity and selectivity toward CO.


Sign in / Sign up

Export Citation Format

Share Document