scholarly journals Recent Advances in Conventional Methods and Electrochemical Aptasensors for Mycotoxin Detection

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1437
Author(s):  
Jing Yi Ong ◽  
Andrew Pike ◽  
Ling Ling Tan

The presence of mycotoxins in foodstuffs and feedstuffs is a serious concern for human health. The detection of mycotoxins is therefore necessary as a preventive action to avoid the harmful contamination of foodstuffs and animal feed. In comparison with the considerable expense of treating contaminated foodstuffs, early detection is a cost-effective way to ensure food safety. The high affinity of bio-recognition molecules to mycotoxins has led to the development of affinity columns for sample pre-treatment and the development of biosensors for the quantitative analysis of mycotoxins. Aptamers are a very attractive class of biological receptors that are currently in great demand for the development of new biosensors. In this review, the improvement in the materials and methodology, and the working principles and performance of both conventional and recently developed methods are discussed. The key features and applications of the fundamental recognition elements, such as antibodies and aptamers are addressed. Recent advances in aptasensors that are based on different electrochemical (EC) transducers are reviewed in detail, especially from the perspective of the diagnostic mechanism; in addition, a brief introduction of some commercially available mycotoxin detection kits is provided.

Separations ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 206
Author(s):  
Shahryar Jafarinejad ◽  
Milad Rabbani Esfahani

Activities and/or processes in different segments of the petroleum industry, including upstream and downstream, generate aqueous waste streams containing oil and various contaminants that require treatment/purification before release/reuse. Nanofiltration (NF) technology has been approved as an efficient technology for treating wastewater streams from the petroleum industry. The primary critical issues in an NF treatment process can be listed as mitigation of membrane fouling; selection of appropriate pre-treatment process; and selection of a suitable, cost-effective, non-hazardous cleaning strategy. In this study, NF separation mechanisms, membrane fabrication/modification, effective factors on NF performance, and fouling are briefly reviewed. Then, a summary of recent NF treatment studies on various petroleum wastewaters and performance evaluation is presented. Finally, based on the gaps identified in the field, the conclusions and future perspectives are discussed.


2019 ◽  
Vol 26 (28) ◽  
pp. 5340-5362 ◽  
Author(s):  
Xin Chen ◽  
Giuseppe Gumina ◽  
Kristopher G. Virga

:As a long-term degenerative disorder of the central nervous system that mostly affects older people, Parkinson’s disease is a growing health threat to our ever-aging population. Despite remarkable advances in our understanding of this disease, all therapeutics currently available only act to improve symptoms but cannot stop the disease progression. Therefore, it is essential that more effective drug discovery methods and approaches are developed, validated, and used for the discovery of disease-modifying treatments for Parkinson’s disease. Drug repurposing, also known as drug repositioning, or the process of finding new uses for existing or abandoned pharmaceuticals, has been recognized as a cost-effective and timeefficient way to develop new drugs, being equally promising as de novo drug discovery in the field of neurodegeneration and, more specifically for Parkinson’s disease. The availability of several established libraries of clinical drugs and fast evolvement in disease biology, genomics and bioinformatics has stimulated the momentums of both in silico and activity-based drug repurposing. With the successful clinical introduction of several repurposed drugs for Parkinson’s disease, drug repurposing has now become a robust alternative approach to the discovery and development of novel drugs for this disease. In this review, recent advances in drug repurposing for Parkinson’s disease will be discussed.


Author(s):  
Tara Hyland-Russell

Canadian Indigenous novels emerged as a specific genre within the last thirty years, rooted in a deep, thousands-year-old ‘performance art and poetic tradition’ of oratory, oral story, poetry, and drama. In addition to these oral and performance traditions are the ‘unique and varying methods of written communication’ that flourished long before contact with Europeans. The chapter considers Canadian novels by Indigenous writers. It shows that Indigenous fiction is deeply intertwined with history, politics, and a belief in the power of story to name, resist, and heal; that novel-length Aboriginal fiction in Canada built on a growing body of other forms of Indigenous literature; and that many Indigenous novels foreground their relationship with place and identity as key features of the resistance against systemic and institutional racism. It also examines coming-of-age novels of the 1980s and 1990s that are grounded in realism.


2021 ◽  
Author(s):  
Roger A. Sheldon ◽  
Alessandra Basso ◽  
Dean Brady

This tutorial review focuses on recent advances in technologies for enzyme immobilisation, enabling their cost-effective use in the bio-based economy and continuous processing in general.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1342
Author(s):  
Borja Nogales ◽  
Miguel Silva ◽  
Ivan Vidal ◽  
Miguel Luís ◽  
Francisco Valera ◽  
...  

5G communications have become an enabler for the creation of new and more complex networking scenarios, bringing together different vertical ecosystems. Such behavior has been fostered by the network function virtualization (NFV) concept, where the orchestration and virtualization capabilities allow the possibility of dynamically supplying network resources according to its needs. Nevertheless, the integration and performance of heterogeneous network environments, each one supported by a different provider, and with specific characteristics and requirements, in a single NFV framework is not straightforward. In this work we propose an NFV-based framework capable of supporting the flexible, cost-effective deployment of vertical services, through the integration of two distinguished mobile environments and their networks: small sized unmanned aerial vehicles (SUAVs), supporting a flying ad hoc network (FANET) and vehicles, promoting a vehicular ad hoc network (VANET). In this context, a use case involving the public safety vertical will be used as an illustrative example to showcase the potential of this framework. This work also includes the technical implementation details of the framework proposed, allowing to analyse and discuss the delays on the network services deployment process. The results show that the deployment times can be significantly reduced through a distributed VNF configuration function based on the publish–subscribe model.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 793
Author(s):  
Uroš Zupančič ◽  
Joshua Rainbow ◽  
Pedro Estrela ◽  
Despina Moschou

Printed circuit boards (PCBs) offer a promising platform for the development of electronics-assisted biomedical diagnostic sensors and microsystems. The long-standing industrial basis offers distinctive advantages for cost-effective, reproducible, and easily integrated sample-in-answer-out diagnostic microsystems. Nonetheless, the commercial techniques used in the fabrication of PCBs produce various contaminants potentially degrading severely their stability and repeatability in electrochemical sensing applications. Herein, we analyse for the first time such critical technological considerations, allowing the exploitation of commercial PCB platforms as reliable electrochemical sensing platforms. The presented electrochemical and physical characterisation data reveal clear evidence of both organic and inorganic sensing electrode surface contaminants, which can be removed using various pre-cleaning techniques. We demonstrate that, following such pre-treatment rules, PCB-based electrodes can be reliably fabricated for sensitive electrochemical biosensors. Herein, we demonstrate the applicability of the methodology both for labelled protein (procalcitonin) and label-free nucleic acid (E. coli-specific DNA) biomarker quantification, with observed limits of detection (LoD) of 2 pM and 110 pM, respectively. The proposed optimisation of surface pre-treatment is critical in the development of robust and sensitive PCB-based electrochemical sensors for both clinical and environmental diagnostics and monitoring applications.


2020 ◽  
Vol 16 (3) ◽  
pp. 255-269
Author(s):  
Enrico Bozzo ◽  
Paolo Vidoni ◽  
Massimo Franceschet

AbstractWe study the stability of a time-aware version of the popular Massey method, previously introduced by Franceschet, M., E. Bozzo, and P. Vidoni. 2017. “The Temporalized Massey’s Method.” Journal of Quantitative Analysis in Sports 13: 37–48, for rating teams in sport competitions. To this end, we embed the temporal Massey method in the theory of time-varying averaging algorithms, which are dynamic systems mainly used in control theory for multi-agent coordination. We also introduce a parametric family of Massey-type methods and show that the original and time-aware Massey versions are, in some sense, particular instances of it. Finally, we discuss the key features of this general family of rating procedures, focusing on inferential and predictive issues and on sensitivity to upsets and modifications of the schedule.


2021 ◽  
Author(s):  
Aimee Alice Sanford ◽  
Alexandra E Rangel ◽  
Trevor A Feagin ◽  
Robert G Lowery ◽  
Hector S Argueta-Gonzalez ◽  
...  

Aptamers are widely employed as recognition elements in small molecule biosensors due to their ability to recognize small molecule targets with high affinity and selectivity. Structure-switching aptamers are particularly promising...


Sign in / Sign up

Export Citation Format

Share Document