scholarly journals AOX removal from industrial wastewaters using advanced oxidation processes: assessment of a combined chemical–biological oxidation

2013 ◽  
Vol 68 (9) ◽  
pp. 2048-2054 ◽  
Author(s):  
J. Luyten ◽  
K. Sniegowski ◽  
K. Van Eyck ◽  
D. Maertens ◽  
S. Timmermans ◽  
...  

In this paper, the abatement of adsorbable halogenated organic compounds (AOX) from an industrial wastewater containing relatively high chloride concentrations by a combined chemical and biological oxidation is assessed. For chemical oxidation, the O3/UV, H2O2/UV and photo-Fenton processes are evaluated on pilot scale. Biological oxidation is simulated in a 4 h respirometry experiment with periodic aeration. The results show that a selective degradation of AOX with respect to the matrix compounds (expressed as chemical oxygen demand) could be achieved. For O3/UV, lowering the ratio of O3 dosage to UV intensity leads to a better selectivity for AOX. During O3-based experiments, the AOX removal is generally less than during the H2O2-based experiments. However, after biological oxidation, the AOX levels are comparable. For H2O2/UV, optimal operating parameters for UV and H2O2 dosage are next determined in a second run with another wastewater sample.

2000 ◽  
Vol 41 (12) ◽  
pp. 223-231 ◽  
Author(s):  
J. E. Burgess ◽  
J. Harkness ◽  
P. J. Longhurst ◽  
T. Stephenson

Trace metals (K, Fe, Mg, Cu, Ca, Mn, Al, Zn, Mo, Co) and vitamins (biotin, niacin, pyridoxine, lactoflavin, thiamine, pantothenic acid) were tested for enhancing chemical oxygen demand (COD) and toxicity removal in activated sludge treating trade effluent. Rapid respirometry screening indicated that micronutrient addition could not ameliorate macronutrient deficiencies, but could significantly improve the degradation of hard COD in the wastewater (up to 4.24 kg COD/kg MLSS/d, i.e. 320% of the control) with no significant effect on the air requirement of the sludge. Several positive effects led to the conclusion that micronutrients have the potential to optimise the process performance of activated sludge plants treating industrial wastewater. Porous pots were used to further trial eight of the micronutrients. The retention of biomass in the pots was increased in all cases. Improvements in the degradation of COD (up to 260% of the control) were observed while biological oxygen demand (BOD) degradation was not affected. This implied the use of recalcitrant substrate components as a food source. Toxicity tests showed that the effluents from the experimental porous pots were less toxic than the control effluents. The effects of niacin addition in activated sludge treatment of industrial waste at pilot-scale were: improved sludge handling, increased COD, ammonia, suspended solids and phosphorus removal. Several industrialists saw micronutrient addition as a route to successful adaptation of processes to accommodate toxicity– based legislation.


2021 ◽  
Vol 9 (1) ◽  
pp. 3073-3081
Author(s):  
Mohamed Nabil Ali ◽  
Hanan A Fouad ◽  
Mohamed M Meky ◽  
Rehab M Elhefny

Due to the lack of freshwater resources in Egypt, cement wastewater treatment was performed to widen the range of the water used in irrigation to face the massive future water scarcity. In this study, integrated fixed-film activated sludge (IFAS) was used as a biological treatment method. A laboratory pilot was established as a simulation of the IFAS process. The scale-pilot consists of a primary sedimentation tank, an IFAS tank equipped with an air blower, and a final settling tank. Three experimental attempts were performed using 3 different bio-carriers. In the first trial, Luffa sponges were used as natural bio-carriers and polyurethane sponges (PU) as artificial bio-carriers in the second trial, in addition to a combination between Luffa and PU sponges as a hybrid bio-carrier in the third trial. After analyzing the physicochemical properties of wastewater at the national research center in Cairo, the removal efficiency of TSS (total suspended solids), COD (chemical oxygen demand) , BOD(biological oxygen demand), TN (total nitrogen), and TP (total phosphorous) was 94.5%, 87.8%, 90.8%, 75.9%, and 69.4%, respectively in case of using the combination between Luffa and PU sponges. It can be concluded that using IFAS process was effective for cement wastewater treatment and the effluent wastewater met the Egyptian code limitations for reuse in agriculture purposes.


Author(s):  
Teklit Gebregiorgis

With rapidly growing urbanization and industrialization in developing countries, a large volume of wastewater is produced from industries that contain chemicals generating high environmental risks, which could affect health and socio-economic activities if not treated properly. In this study, the discoloration of wastewater containing azo dyes by chemical oxidation process combined with a biological treatment was evaluated and applied on real textile wastewater generated from one Ethiopian industrial site. The use of TiO2 as a photocatalyst and the effect of the addition of H2O2 on color removal were investigated. Photocatalysis was followed by aerobic biological treatment and their combination resulted in 93.3 and 90.4% removal of color and chemical oxygen demand (COD), respectively. These results revealed that the combination of photocatalytic and biological treatment approach shows a promising potential for the removal of color from real textile wastewater.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kanika Arora ◽  
Parneet Kaur ◽  
Pradeep Kumar ◽  
Archana Singh ◽  
Sanjay Kumar Singh Patel ◽  
...  

Wastewater is not a liability, instead considered as a resource for microbial fermentation and value-added products. Most of the wastewater contains various nutrients like nitrates and phosphates apart from the organic constituents that favor microbial growth. Microalgae are unicellular aquatic organisms and are widely used for wastewater treatment. Various cultivation methods such as open, closed, and integrated have been reported for microalgal cultivation to treat wastewater and resource recovery simultaneously. Microalgal growth is affected by various factors such as sunlight, temperature, pH, and nutrients that affect the growth rate of microalgae. Microalgae can consume urea, phosphates, and metals such as magnesium, zinc, lead, cadmium, arsenic, etc. for their growth and reduces the biochemical oxygen demand (BOD). The microalgal biomass produced during the wastewater treatment can be further used to produce carbon-neutral products such as biofuel, feed, bio-fertilizer, bioplastic, and exopolysaccharides. Integration of wastewater treatment with microalgal bio-refinery not only solves the wastewater treatment problem but also generates revenue and supports a sustainable and circular bio-economy. The present review will highlight the current and advanced methods used to integrate microalgae for the complete reclamation of nutrients from industrial wastewater sources and their utilization for value-added compound production. Furthermore, pertaining challenges are briefly discussed along with the techno-economic analysis of current pilot-scale projects worldwide.


2017 ◽  
Vol 29 (3) ◽  
pp. 265-277 ◽  
Author(s):  
Yacouba Sanou ◽  
Samuel Pare ◽  
Gnon Baba ◽  
Nyonuwosro Kwamivi Segbeaya ◽  
Libona Yvonne Bonzi-Coulibaly

The discharge of industrial wastewater and domestic sewage from Kara city affects the quality of Kara river water. To mitigate this water pollution, the capacity of mesoporous charcoal prepared from rice husk (RH) to remove the chemical oxygen demand (COD) in wastewater samples from five sites of Kara City was investigated. The temperature, pH, conductivity, total suspended solids (TSS), biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and oxidizable matters (OM) of samples were analyzed. Batch experiments were applied to study the COD reduction by using powdered RH and two types of activated charcoals (AC). The experimental parameters used to identify optimal conditions for COD abatement are solution pH, contact time, mass of adsorbent and initial value of COD including the nature of wastewater. Activated charcoals showed a higher attenuation capacity of the COD in comparison with the rice husk powder. Maximal abatement rate (100%) of COD removal was obtained for the wastewater sample with a COD of 1 060 mg O2∙L-1 treated at pH 8 with the charcoal GAC-Base using an adsorbent concentration of 10 g∙L-1 with a contact time of 60 min.


2009 ◽  
Vol 60 (4) ◽  
pp. 1089-1095 ◽  
Author(s):  
Marco S. Lucas ◽  
Maria Mouta ◽  
António Pirra ◽  
José A. Peres

The degradation of the organic pollutants present in winery wastewater was carried out by the combination of two successive steps: an aerobic biological process followed by a chemical oxidation process using Fenton's reagent. The main goal of this study was to evaluate the temporal characteristics of solids and chemical oxygen demand (COD) present in winery wastewater in a long term aerated storage bioreactor. The performance of different air dosage daily supplied to the biologic reactor, in laboratory and pilot scale, were examined. The long term hydraulic retention time, 11 weeks, contributed remarkably to the reduction of COD (about 90%) and the combination with the Fenton's reagent led to a high overall COD reduction that reached 99.5% when the mass ratio (R = H2O2/COD) used was equal to 2.5, maintaining constant the molar ratio H2O2/Fe2 + =15.


Author(s):  
Teklit Gebregiorgis Ambaye ◽  
Kiros Hagos

Abstract In this study, the discoloration of wastewater containing azo dyes by chemical oxidation process combined with a biological treatment was evaluated and applied to real textile wastewater generated from one Ethiopian industrial site. The use of TiO2 as photocatalyst and the effect of the addition of H2O2 on color removal was first investigated. Photocatalysis was followed by aerobic biological treatment, and their combination resulted in a high extent of color removal (93.3%) and chemical oxygen demand (COD) reduction (90.4%). This was reached without pH correction and with low energy consumption compared to the implementation of AOPs alone. This study performed with real textile wastewater allows the direct extrapolation of the data for the design of a cost-effective and applicable treatment procedure at a pilot scale. Graphic abstract


2014 ◽  
Vol 4 (02) ◽  
Author(s):  
Rina S. Soetopo ◽  
Sri Purwati ◽  
Henggar Hardiani ◽  
Mukharomah Nur Aini ◽  
Krisna Adhitya Wardhana

A continuous pilot scale study has been conducted to investigate the effectiveness of anaerobic digestion of biological sludge. The sludge has a total solid content of 0.53% - 1.1%, pH of 7.20 to 7.32. Its organic content is about 97 %, The research were conducted in two stages, which are acidification (performed in 3 m3 the Continously Stirred Tank Reactor/CSTR at pH of 5.5 to 6.0) and methanation (performed in 5 m3 the Up Flow Anaerobic Sludge Blanket/UASB reactor at pH 6.5 to 7.0). The retention time (RT) was gradually shortened from 6 days to 1 day for acidification and from 8 days to 2 days for methanation. The results showed that operating the CSTR at the RT of 1 day and the organic loading of 8.23 g Volatile Solid (VS)/m3.day could produce Volatile Fatty Acid (VFA) at an average value of 17.3 g/kg VS.day. Operating the UASB reactor at the RT of 2 days and the organic loading (Chemical Oxygen Demand/COD) of 2.4 kg COD/m3.day could produce biogas at an average value of 66.3 L/day, with an average methane content of 69.9%, methane rate of 0.17 L CH4/g COD reduction or 19.06 L CH4/kg VS. Furthermore, methanation could reduce COD at an average value of 51.2 %, resulting in the effluent average value of COD filtrate and COD total of 210.1 mg/L and 375.2 mg /L, respectively.Keywords: acidification, methanation, CSTR, UASB, biogas ABSTRAKPercobaan digestasi anaerobik lumpur IPAL biologi industri kertas secara kontinyu skala pilot telah dilakukan di industri kertas dengan tujuan mengkaji efektivitas proses digestasi anaerobik dalam mengolah lumpur tersebut. Lumpur yang digunakan memiliki total solids sekitar 0,53% – 1,1%, pH netral (7,20 – 7,32) dengan komponen utama senyawa organik sekitar 97%. Percobaan dilakukan dalam dua tahap yaitu asidifikasi dalam reaktor CSTR berkapasitas 3 m3 pada pH 5,5 – 6,0 dan metanasi dalam reaktor UASB berkapasitas 5 m3 pada pH 6,5 – 7,0. Percobaan dilakukan dengan waktu retensi yang dipersingkat secara bertahap dari 6 hari ke 1 hari untuk proses asidifikasi dan dari 8 hari ke 2 hari untuk proses metanasi. Hasil percobaan menunjukkan bahwa pengoperasian reaktor CSTR dengan waktu retensi 1 hari dan beban organik 8,3 g VS/m3.hari dapat menghasilkan VFA rata-rata 17,3 g/kg VS.hari dengan kisaran 8,36 – 30,59 g/kg VS.hari, sedangkan pengoperasian reaktor UASB pada waktu retensi 2 hari dan beban organik 2,4 kg COD/m3.hari dapat menghasilkan biogas rata-rata 66,3 L/hari dengan kadar metana rata-rata 69,9% atau 0,17 L CH4/g COD reduksi atau 19,06 L CH4/kg VS. Selain itu proses metanasi dapat menurunkan COD terlarut rata-rata 51,2%, dengan konsentrasi efluen COD terlarut  rata-rata 210,1 mg/L dan COD total rata-rata 375,2 mg/L.Kata kunci: asidifikasi, metanasi, CSTR, UASB, biogas


2014 ◽  
Vol 13 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Ghasem Najafpour Darzi ◽  
Reza Katal ◽  
Hossein Zare ◽  
Seyed Omid Rastegar ◽  
Poorya Mavaddat

2017 ◽  
Vol 77 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Yanjun Mao ◽  
Xie Quan ◽  
Huimin Zhao ◽  
Yaobin Zhang ◽  
Shuo Chen ◽  
...  

Abstract The activated sludge (AS) process is widely applied in dyestuff wastewater treatment plants (WWTPs); however, the nitrogen removal efficiency is relatively low and the effluent does not meet the indirect discharge standards before being discharged into the industrial park's WWTP. Hence it is necessary to upgrade the WWTP with more advanced technologies. Moving bed biofilm processes with suspended carriers in an aerobic tank are promising methods due to enhanced nitrification and denitrification. Herein, a pilot-scale integrated free-floating biofilm and activated sludge (IFFAS) process was employed to investigate the feasibility of enhancing nitrogen removal efficiency at different hydraulic retention times (HRTs). The results showed that the effluent chemical oxygen demand (COD), ammonium nitrate (NH4+-N) and total nitrogen (TN) concentrations of the IFFAS process were significantly lower than those of the AS process, and could meet the indirect discharge standards. PCR-DGGE and FISH results indicated that more nitrifiers and denitrifiers co-existed in the IFFAS system, promoting simultaneous nitrification and denitrification. Based on the pilot results, the IFFAS process was used to upgrade the full-scale AS process, and the effluent COD, NH4+-N and TN of the IFFAS process were 91–291 mg/L, 10.6–28.7 mg/L and 18.9–48.6 mg/L, stably meeting the indirect discharge standards and demonstrating the advantages of IFFAS in dyestuff wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document