Removing organic matter from sulfate-rich wastewater via sulfidogenic and methanogenic pathways

2014 ◽  
Vol 69 (8) ◽  
pp. 1669-1675 ◽  
Author(s):  
Rogerio Silveira Vilela ◽  
Márcia Helena Rissato Zamariolli Damianovic ◽  
Eugenio Foresti

The simultaneous organic matter removal and sulfate reduction in synthetic sulfate-rich wastewater was evaluated for various chemical oxygen demand (COD)/sulfate ratios applied in a horizontal-flow anaerobic immobilized sludge (HAIS) reactor. At higher COD/sulfate ratios (12.5 and 7.5), the removal of organic matter was stable, likely due to methanogenesis. A combination of sulfate reduction and methanogenesis was clearly established at COD/sulfate ratios of 3.0 and 1.9. At a COD/sulfate ratio of 1.0, the organic matter removal was likely influenced by methanogenesis inhibition. The quantity of sulfate removed at a COD/sulfate ratio of 1.0 was identical to that obtained at a ratio of 1.9, indicating a lack of available electron donors for sulfidogenesis. The sulfate reduction and organic matter removal were not maximized at the same COD/sulfate ratio; therefore, competitive inhibition must be the predominant mechanism in establishing an electron flow.

2014 ◽  
Vol 67 (1) ◽  
pp. 67-72
Author(s):  
Rodolfo Maia Rangel ◽  
Roberto José de Carvalho ◽  
Maurício Leonardo Torem

A mathematical model of the organic matter (chemical oxygen demand - COD) removal from synthetic oil-water emulsions by the electrocoagulation process was developed to evaluate the COD abatement. The model comprises the three fundaments of electrocoagulation: electrochemistry, coagulation and flotation. By comparing the experimental and calculated values of COD, it was found that the model was able to adequately predict the concentrations of organic matter (COD) present in the emulsions and satisfactorily describe the electrocoagulation process.


2018 ◽  
Vol 31 (2) ◽  
pp. 97-107
Author(s):  
Ahmed Hamdani ◽  
Mohammed Mountadar ◽  
Omar Assobhei

In order to study the simultaneous removal of nitrate and organic matter from a dairy effluent containing 670 mg∙L-1 of nitrate (NO3--N) and 5 760 mg∙L-1 of dissolved chemical oxygen demand (CODd), denitrification in a laboratory scale bioreactor consisting of an immersed bacterial bed colonized by an heterotrophic denitrifying flora (HDF) selected for NO3- reduction, COD consumption and adapted to grow on an effluent produced by a dairy industry was investigated. The obtained results indicated that at the optimal conditions of temperature (30°C), pH (7), COD/NO3--N ratio (5), the operation lasted 108h with total reduction of nitrate in 72h, no nitrite accumulation, and 92% of soluble COD removal in 96h. This indicates that the biodenitrification was accompanied with a high efficiency of matter organic removal as an electron donor, and thereby satisfies the applicable standards.


2017 ◽  
Vol 76 (12) ◽  
pp. 3269-3277 ◽  
Author(s):  
B. Neethu ◽  
M. M. Ghangrekar

Abstract Sediment microbial fuel cells (SMFCs) are bio-electrochemical devices generating electricity from redox gradients occurring across the sediment–water interface. Sediment microbial carbon-capture cell (SMCC), a modified SMFC, uses algae grown in the overlying water of sediment and is considered as a promising system for power generation along with algal cultivation. In this study, the performance of SMCC and SMFC was evaluated in terms of power generation, dissolved oxygen variations, sediment organic matter removal and algal growth. SMCC gave a maximum power density of 22.19 mW/m2, which was 3.65 times higher than the SMFC operated under similar conditions. Sediment organic matter removal efficiencies of 77.6 ± 2.1% and 61.0 ± 1.3% were obtained in SMCC and SMFC, respectively. With presence of algae at the cathode, a maximum chemical oxygen demand and total nitrogen removal efficiencies of 63.3 ± 2.3% (8th day) and 81.6 ± 1.2% (10th day), respectively, were observed. The system appears to be favorable from a resources utilization perspective as it does not depend on external aeration or membranes and utilizes algae and organic matter present in sediment for power generation. Thus, SMCC has proven its applicability for installation in an existing oxidation pond for sediment remediation, algae growth, carbon conversion and power generation, simultaneously.


2021 ◽  
Vol 10 (3) ◽  
pp. 299-306
Author(s):  
Erick Samuel Frederico Hasibuan ◽  
Endang Supriyantini ◽  
Sunaryo Sunaryo

Perairan Silugonggo merupakan area pemukiman warga dengan banyak aktivitas perikanan dan kelautan seperti: pertambakan, industri perikanan dan merupakan alur pelayaran. Tingginya aktivitas pemukiman dan industri akan menghasilkan limbah organik dalam jumlah besar. Bahan organik yang melimpah dapat menimbulkan pencemaran lingkungan. Penelitian ini bertujuan untuk mengetahui kandungan bahan organik di perairan sungai Silugonggo, Kecamatan Juwana, Kabupaten Pati. Kandungan bahan organik diketahui melalui analisis parameter TOM (Total Organic Matter), BOD5 (Biochemical Oxygen Demand) dan COD (Chemical Oxygen Demand). Pengambilan sampel dilaksanakan pada tanggal 20 Desember 2019 dan 20 Januari 2020. Metode yang digunakan pada penelitian ini menggunakan metode kasus dengan pengamatan secara langsung di lapangan dan penentuan lokasi penelitian menggunakan metode purposive sampling. Hasil pengukuran parameter penelitian dianalisis menggunakan analisis ragam. Hasil penelitian menunjukkan bahwa nilai TOM sebesar 8,11 – 11,9 mg/L. Hasil pengukuran parameter (a) BOD5 sebesar 8,07 – 24,66 mg/L dan (b) COD sebesar 26,04 – 79,21 mg/L, hasil tersebut berada di bawah baku mutu yang ditetapkan menurut Keputusan Menteri Lingkungan Hidup No. 51 Tahun 2004 tentang Baku Mutu Air Limbah. Tingginya nilai TOM dikarenakan banyaknya masukan limbah bahan organik dari aktivitas di perairan sungai Silugonggo, seperti: pertambakan, industri perikanan, dan alur pelayaran. Silugonggo waters is a residential area with many fishery and marine activities such as: aquaculture, fishing industry and shipping lanes. High residential and industrial activities will produce large amounts of organic waste. Abundant organic matter can cause environmental pollution. This study aims to determine the content of organic matter in the waters of the Silugonggo River, Juwana District, Pati Regency. The content of organic matter is known through parameter analysis of TOM (Total Organic Matter), BOD5 (Biochemical Oxygen Demand) and COD (Chemical Oxygen Demand). Sampling was carried out on December 20, 2019 and January 20, 2020. The method used in this study used the method of direct observation in the field and the date of the research location using the purposive sampling method. The results of the measurement of research parameters were analyzed using analysis of variance. The results showed that the TOM value was 8.11–11.9 mg/L. Parameter measurement results (a) BOD5 of 8.07–24.66 mg/L and (b) COD of 26.04–79.21 mg/L, these results are below the quality standard stipulated according to the Decree of the Minister of the Environment No. 51 of 2004 concerning Wastewater Quality Standards. The high value of TOM is due to the large number of inputs of organic matter from activities in the waters of the Silugonggo river, such as: aquaculture, fishing industry, and shipping lanes.


2020 ◽  
Vol 9 (6) ◽  
pp. e183963748
Author(s):  
Rafael Souza Leopoldino Nascimento ◽  
Ludymyla Marcelle Lima Silva ◽  
Lucas Periard ◽  
Anibal da Fonseca Santiago

The technology of microalgae photobioreactors and illuminated by LEDs has been widely studied for the treatment of wastewater. However, sunlight is a free resource and should be taken advantage of. But the question remains whether photobioreactors illuminated by natural (sunlight) light in combination with artificial light can have greater operational stability or greater performance when compared to systems illuminated only by artificial light. In this context, continuous flow photobioreactors illuminated by Light Emitting Diodes (LEDs) combined, or not, with sunlight were operated and had their performance evaluated. The variables analyzed were pH, OD, chemical oxygen demand (COD), chlorophyll - a and total suspended solids. The photobioreactors were effective for removing organic matter, with 75 ± 15% in the photobioreactor illuminated by LED and 65 ± 10% in the photobioreactor illuminated by sunlight and LED. The results showed that the use of combined lighting favors the production of dissolved oxygen and ensures greater operational stability in the removal of carbonaceous organic matter.


2013 ◽  
Vol 41 (9) ◽  
pp. 928-933 ◽  
Author(s):  
Sandra M. Amorim ◽  
Mario T. Kato ◽  
Lourdinha Florencio ◽  
Sávia Gavazza

2019 ◽  
Vol 6 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Veymar G. Tacias-Pascacio ◽  
Abumalé Cruz-Salomón ◽  
José H. Castañón-González ◽  
Beatriz Torrestiana-Sanchez

Background: Wet coffee processing consists of the removal of the pulp and mucilage of the coffee cherry. This process generates a large amount of acidic wastewater which is very aggressive to the environment because of its high content of recalcitrant organic matter. Therefore, treatment is necessary before discharge to water bodies. Because of this reason, this study aimed to evaluate the organic matter removal efficiency in an Anaerobic Baffled Bioreactor (ABR) coupled to a Microfiltration Membrane (MF) system as a new eco-friendly option in the treatment of wet Coffee Processing Wastewater (CPWW). Methods: Two systems (S1 and S2) were evaluated at Hydraulic Retention Times (HRT) of 59 h and 83 h, respectively. Both systems were operated at mesophilic conditions, at a Transmembrane Pressure (TMP) of 50 kPa during 1800 h. Results: The S2 generated higher organic matter removal efficiency, reaching removal values of turbidity of 98.7%, Chemical Oxygen Demand (COD) of 81%, Total Solids (TS) of 72.6%, Total Suspended Solids (TSS) of 100%, and Total Dissolved Solids (TDS) of 61%, compared with the S1. Conclusion: The S2 represents a new eco-friendly alternative to treat CPWW and reduce its pollutant effect.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2538 ◽  
Author(s):  
Artur Mielcarek ◽  
Joanna Rodziewicz ◽  
Wojciech Janczukowicz ◽  
Artur Dobrowolski

Soilless plantations under cover constitute a significant part of horticulture. This study aimed at determining the qualitative composition of wastewater generated from the soilless cultivation of tomato under cover. This is important for managing the wastewater, which may be recirculated to allow the or employ a partial or complete recovery of minerals. Two plantations located in north-eastern Poland, which differed in the type of substratum (coconut fiber or rockwool), were studied. The generated wastewater was characterized by a low content of organic matter and a high concentration of total nitrogen (TN), total phosphorus (TP), and salinity (EC). Over 99% of the TN was constituted by nitrates. The chemical oxygen demand (COD) changed from 50.07 to 75.82 mgO2·L−1 (greenhouse 1), and from 37.35 to 78.12 mgO2·L−1 (greenhouse 2); the content of TN changed from 403.59 to 614.89 mgN·L−1 (greenhouse 1), and from 270.00 to 577.40 mgN·L−1 (greenhouse 2); that of TP changed from 35.44 to 78.00 mgP·L−1 (greenhouse 1), and from 54.10 to 104.00 mgP·L−1 (greenhouse 2); and the EC changed from 3.53 to 6.93 mS·cm−1 (greenhouse 1), and from 4.94 to 6.94 mS·cm−1 (greenhouse 2). No statistically significant correlations were noted between TN and TP, or between TP and EC.


1994 ◽  
Vol 30 (10) ◽  
pp. 179-187 ◽  
Author(s):  
I. T. Miettinen ◽  
P. J. Martikainen ◽  
T. Vartiainen

Transformations in the amount and quality of organic matter (humus) during bank filtration of surface water were studied by analyzing the changes in total organic carbon (TOC), non-purgeable organic carbon (NPOC), chemical oxygen demand (COD), color of water, and UV absorbing humus fractions. The amount of organic matter expressed as TOC, NPOC, and COD depended on temperature and filtration distance from lake water. The color of water and the UV absorbing humus peaks presenting different humus molecule fractions decreased more effectively than other parameters measuring the amount of organic matter in water. The ratio of COD to TOC decreased when the filtration distance of water increased. Our observations indicated that bank filtration of humus-rich lake water changed more the quality of organic matter than its total amount.


1988 ◽  
Vol 20 (1) ◽  
pp. 161-170 ◽  
Author(s):  
O. Milstein ◽  
A. Haars ◽  
A. Majcherczyk ◽  
J. Trojanowski ◽  
D. Tautz ◽  
...  

Organic matter from spent bleaching effluents (from chlorination (C) or extraction (E) stages, or a mixture of both) was effectively precipitated as a water insoluble complex with polyethyleneimine (polyimine). Precipitation was performed in a pilot unit operating automatically. The colour, chemical oxygen demand (COD), and adsorbable organic halogens (AOX) were reduced in the C-effluent by up to 92%, 65%, and 84%, respectively. Regarding the E-stage effluent, reduction was up to 76% for colour, 70% for COD, and 73% for AOX. No significant reduction of BOD5 was observed in the supernatant of the treated effluent. Fish toxicity was greatly reduced. Laccase increased the molecular weight of the effluent constituents, thus facilitating subsequent precipitation. After treatment with laccase, the bulk of mono- and dichlorophenol is coprecipitated with the liquors from the C and E bleaching stages. Fungi (representatives of the genera Aspergillus and Penicillium) achieved an appreciable level of degradation of chlorophenols and other chloroorganic compounds from the bleaching effluent.


Sign in / Sign up

Export Citation Format

Share Document