Improved methane yield from wastewater grown algal biomass

2018 ◽  
Vol 78 (1) ◽  
pp. 81-91 ◽  
Author(s):  
Mohit Thawani ◽  
Nidhi Hans ◽  
Saurabh Samuchiwal ◽  
Sanjeev Kumar Prajapati

Abstract Methane production from the algal biomass cultivated in a laboratory scale continuous photobioreactor (PBR) using sewage was evaluated in the present work. During the preliminary experiments, algal biomass reached up to 1.69 ± 0.35 g L–1 in 12 days' growth period. Besides, 65 to 100% removal in concentrations of total dissolved phosphorus (TDP), nitrate nitrogen (NO3–N), total ammoniacal nitrogen (TAN) and soluble chemical oxygen demand (sCOD) was also recorded. The sCOD removal in the reactor was 100%, whereas removal of TDP, NO3–N and TAN were up to 75, 40 and 92%, respectively. Upon anaerobic digestion, the fresh algal biomass showed methane yield of 180 mL g–1 VSfed. Further, algal biomass was stored under natural conditions in open containers (aerobic conditions) in darkness at room temperature (27–30 °C) for 72 h. Interestingly, >48% COD solubilization from algal biomass was observed during storage. Pretreatment through natural storage was further confirmed with qualitative observations including scanning electron and fluorescence microscopic analysis. Moreover, higher methane yield (284.38 mL g–1 VSfed) was observed from the samples stored for 60 h. Thus, natural storage for a designated period may be recommended as a prerequisite stage in the process of methane production from wastewater-grown algal biomass.

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2577 ◽  
Author(s):  
Dong-Mei Piao ◽  
Young-Chae Song ◽  
Dong-Hoon Kim

This study demonstrated the enhancement of biogenic coal conversion to methane in a bioelectrochemical anaerobic reactor with polarized electrodes. The electrode with 1.0 V polarization increased the methane yield of coal to 52.5 mL/g lignite, which is the highest value reported to the best of our knowledge. The electrode with 2.0 V polarization shortened the adaptation time for methane production from coal, although the methane yield was slightly less than that of the 1.0 V electrode. After the methane production from coal in the bioelectrochemical reactor, the hydrolysis product, soluble organic residue, was still above 3600 mg chemical oxygen demand (COD)/L. The hydrolysis product has a substrate inhibition effect and inhibited further conversion of coal to methane. The dilution of the hydrolysis product mitigates the substrate inhibition to methane production, and a 5.7-fold dilution inhibited the methane conversion rate by 50%. An additional methane yield of 55.3 mL/g lignite was obtained when the hydrolysis product was diluted 10-fold in the anaerobic toxicity test. The biogenic conversion of coal to methane was significantly improved by the polarization of the electrode in the bioelectrochemical anaerobic reactor, and the dilution of the hydrolysis product further improved the methane yield.


2020 ◽  
pp. 0958305X2092312
Author(s):  
Anwar Ahmad ◽  
Salam S AlDawey ◽  
SS Reddy

Experimental study of the anaerobic digestion of palm oil mill effluent (POME) was carried out in an anaerobic upflow sludge blanket reactor (UASBR) with bauxite residue. The production rate of methane 114 L/gCOD/d and CH4 concentration was 205 L gCOD/d at 8.5 g/L of bauxite residue in UASBR. The results showed that the highest methane yield was 37.5 L gCODadded/h; CO2 reduction 1.5 L gCODadded and chemical oxygen demand (COD) removal reached 98.3% at 8.5 g/L of bauxite residue, respectively. The results the best by the modified kinetic model and Umax was 100 mg/L. The kinetic of methane production was also studied. The methane yield coefficient, YM, was 0.69 L CH4/gCODremoved. Anaerobic digestion of acetate was the dominant soluble metabolites in development and specific methanogenic activity results showed that high observed between stoichiometric and experimental higher methane production.


RSC Advances ◽  
2015 ◽  
Vol 5 (82) ◽  
pp. 67175-67183 ◽  
Author(s):  
Sanjeev Kumar Prajapati ◽  
Anushree Malik ◽  
V. K. Vijay ◽  
T. R. Sreekrishnan

Novel two fold approach comprising short duration fungal crude enzyme pretreatment of algal biomass followed by codigestion with cattle dung resulting in enhanced methane yield is disclosed.


2021 ◽  
Author(s):  
Yongliang Wang ◽  
Xiaohui Zhou ◽  
Bin Dai ◽  
Xiaoqiang Zhu

Abstract Plant waste (PW) and excess sludge (ES) are two main organic matters of municipal solid waste. However, there are few reports on their anaerobic co-digestion. In this work, the mixed proportion of PW and ES anaerobic co digestion was first optimized at mesophilic temperature, and then the anaerobic co-digestion of PW and ES was enhanced with strong oxidant calcium peroxide (CP). The results showed that the optimal mixing ratio of PW and ES was 1/1 (in terms of volatile solids), and the C/N of mixed digestion substrate was 23.5/1, the maximum methane production was 172.6 mL/g (in terms of volatile solids). CP could enhance methane production from anaerobic co-digestion of PW and ES. When the content of CP was 0.2 g/g (in terms of total suspended solids), the maximum methane production was 234.8 mL/g, about 1.4 times of the blank. The mechanism investigation showed that CP promoted the release of organic matter during the co-digestion, and the higher the content of CP, the greater the release of soluble chemical oxygen demand. The presence of appropriate amount of CP promoted the activities of key enzymes in anaerobic fermentation process, and then increased the efficiency of methane production. The results of this work provide an alternative strategy for the resource utilization of PW and ES.


2016 ◽  
Vol 18 (19) ◽  
pp. 5230-5238 ◽  
Author(s):  
Sanjeev Kumar Prajapati ◽  
Arghya Bhattacharya ◽  
Pushpendar Kumar ◽  
Anushree Malik ◽  
Virendra Kumar Vijay

A novel fungi mediated method for simultaneous bioflocculation and pretreatment of algae, to improve the methane yield, is revealed.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1293
Author(s):  
Gyung-Geun Oh ◽  
Young-Chae Song ◽  
Byung-Uk Bae ◽  
Chae-Young Lee

The bioelectrochemical methane production from acetate as a non-fermentable substrate, glucose as a fermentable substrate, and their mixture were investigated in an anaerobic sequential batch reactor exposed to an electric field. The electric field enriched the bulk solution with exoelectrogenic bacteria (EEB) and electrotrophic methanogenic archaea, and promoted direct interspecies electron transfer (DIET) for methane production. However, bioelectrochemical methane production was dependent on the substrate characteristics. For acetate as the substrate, the main electron transfer pathway for methane production was DIET, which significantly improved methane yield up to 305.1 mL/g chemical oxygen demand removed (CODr), 77.3% higher than that in control without the electric field. For glucose, substrate competition between EEB and fermenting bacteria reduced the contribution of DIET to methane production, resulting in the methane yield of 288.0 mL/g CODr, slightly lower than that of acetate. In the mixture of acetate and glucose, the contribution of DIET to methane production was less than that of the single substrate, acetate or glucose, due to the increase in the electron equivalent for microbial growth. The findings provide a better understanding of electron transfer pathways, biomass growth, and electron transfer losses depending on the properties of substrates in bioelectrochemical methane production.


Author(s):  
D. de la Lama-Calvente ◽  
M. J. Fernández-Rodríguez ◽  
J. Llanos ◽  
J. M. Mancilla-Leytón ◽  
R. Borja

AbstractThe biomass valorisation of the invasive brown alga Rugulopteryx okamurae (Dictyotales, Phaeophyceae) is key to curbing the expansion of this invasive macroalga which is generating tonnes of biomass on southern Spain beaches. As a feasible alternative for the biomass management, anaerobic co-digestion is proposed in this study. Although the anaerobic digestion of macroalgae barely produced 177 mL of CH4 g−1 VS, the co-digestion with a C-rich substrate, such as the olive mill solid waste (OMSW, the main waste derived from the two-phase olive oil manufacturing process), improved the anaerobic digestion process. The mixture improved not only the methane yield, but also its biodegradability. The highest biodegradability was found in the mixture 1 R. okamurae—1 OMSW, which improved the biodegradability of the macroalgae by 12.9% and 38.1% for the OMSW. The highest methane yield was observed for the mixture 1 R. okamurae—3 OMSW, improving the methane production of macroalgae alone by 157% and the OMSW methane production by 8.6%. Two mathematical models were used to fit the experimental data of methane production time with the aim of assessing the processes and obtaining the kinetic constants of the anaerobic co-digestion of different combination of R. okamurae and OMSW and both substrates independently. First-order kinetic and the transference function models allowed for appropriately fitting the experimental results of methane production with digestion time. The specific rate constant, k (first-order model) for the mixture 1 R. okamurae- 1.5 OMSW, was 5.1 and 1.3 times higher than that obtained for the mono-digestion of single OMSW and the macroalga, respectively. In the same way, the transference function model revealed that the maximum methane production rate (Rmax) was also found for the mixture 1 R. okamurae—1.5 OMSW (30.4 mL CH4 g−1 VS day−1), which was 1.6 and 2.2 times higher than the corresponding to the mono-digestions of the single OMSW and sole R. okamurae (18.9 and 13.6 mL CH4 g−1 VS day−1), respectively.


1997 ◽  
Vol 48 (5) ◽  
pp. 445 ◽  
Author(s):  
A. I. Robertson ◽  
M. R. Healey ◽  
A. J. King

Two billabongs on the floodplain of the Murrumbidgee River, Australia, were partitioned in half with impermeable plastic barriers and the biomass of carp was manipulated to establish high- and low-carp biomass treatments in each billabong. Measurements of benthic variables (rates of particle settlement, biofilm development, sediment respiration, macrophyte detritus decomposition, sediment solid-phase nutrient concentrations and benthic algal biomass) were performed over four months from summer to winter 1995. Rates of particle settlement were greater in the high-carp treatment of each billabong throughout the experiment. High carp biomass had a negative impact on the autotrophic component of the biofilm developing on wood blocks placed at different heights above the sediment surface but the mechanism responsible differed between billabongs. Sediment oxygen demand became greater in the presence of a higher biomass of carp during the experiment but time courses differed between billabongs. Manipulations of carp biomass did not influence algal biomass on the sediment surface, the rate of decomposition of macrophyte detritus or sediment solid-phase nutrients or nutrient ratios. The impact of carp on benthic and surficial processes was significant but the mechanisms of change differed between billabongs.


Author(s):  
Yash S. Raval ◽  
Abdelrhman Mohamed ◽  
Jayawant N. Mandrekar ◽  
Cody Fisher ◽  
Kerryl E. Greenwood-Quaintance ◽  
...  

Wound infections are caused by bacteria and/or fungi. The presence of fungal biofilms in wound beds presents a unique challenge, as fungal biofilms may be difficult to eradicate. The goal of this work was to assess the in vitro anti-biofilm activity of a H 2 O 2 -producing electrochemical bandage (e-bandage) against 15 yeast isolates representing commonly-encountered species. Time-dependent decreases in viable biofilm CFU counts of all isolates tested were observed, resulting in no visible colonies with 48 hours of exposure by plate culture. Fluorescence microscopic analysis showed extensive cell membrane damage of biofilm cells after e-bandage treatment. Reductions in intracellular ATP levels of yeast biofilm cells were recorded post e-bandage treatment. Our results suggest that exposure to H 2 O 2 -producing e-bandages reduce in vitro viable cell counts of yeast biofilms, making this a potential new topical treatment approach for fungal wound infections.


2013 ◽  
Vol 69 (2) ◽  
pp. 269-277 ◽  
Author(s):  
C. Da Ros ◽  
C. Cavinato ◽  
F. Cecchi ◽  
D. Bolzonella

In this study the anaerobic co-digestion of wine lees together with waste activated sludge in mesophilic and thermophilic conditions was tested at pilot scale. Three organic loading rates (OLRs 2.8, 3.3 and 4.5 kgCOD/m3d) and hydraulic retention times (HRTs 21, 19 and 16 days) were applied to the reactors, in order to evaluate the best operational conditions for the maximization of the biogas yields. The addition of lee to sludge determined a higher biogas production: the best yield obtained was 0.40 Nm3biogas/kgCODfed. Because of the high presence of soluble chemical oxygen demand (COD) and polyphenols in wine lees, the best results in terms of yields and process stability were obtained when applying the lowest of the three organic loading rates tested together with mesophilic conditions.


Sign in / Sign up

Export Citation Format

Share Document