Preparation of mesoporous activated carbon from date stones for the adsorption of Bemacid Red

2019 ◽  
Vol 79 (7) ◽  
pp. 1357-1366 ◽  
Author(s):  
Rabia Boudia ◽  
Goussem Mimanne ◽  
Karim Benhabib ◽  
Laurence Pirault-Roy

Abstract This work concerns the elimination of the organic pollutant; Bemacid Red (BR), a rather persistent dye present in wastewater from the textile industry in western Algeria, by adsorption on carbon from an agricultural waste in the optimal conditions of the adsorption process. An active carbon was synthesized by treating an agro-alimentary waste, the date stones that are very abundant in Algeria, physically and chemically. Sample after activation (SAA) with phosphoric acid was highly efficient for the removal of BR. The characterization of this porous material has shown a specific surface area that exceeds 900 m2/g with the presence of mesopores. The iodine value also indicates that the activated carbon obtained has a large micro porosity. The reduction of the infrared spectroscopy (FTIR) bands reveals that the waste has been synthesized and activated in good conditions. Parameters influencing the adsorption process have been studied and optimized, such as contact time, adsorbent mass, solution pH, initial dye concentration and temperature. The results show that for a contact time of 60 min, a mass of 0.5 g and at room temperature, the adsorption rate of the BR by the SAA is at its maximum. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were studied to analyse adsorption kinetics. The result shows the adsorption kinetic is best with the pseudo-second-order model. In this study, Langmuir, Freundlich and Temkin isotherms were investigated for adsorption of BR onto SAA. The Freundlich and Temkin isotherms have the highest correlations coefficients. The suggested adsorption process involves multilayer adsorption with the creation of chemical bonds. The mechanism of adsorption of BR by SAA is spontaneous and exothermic, and the Gibbs free energy values confirm that the elimination of the textile dye follows a physisorption.

2010 ◽  
Vol 113-116 ◽  
pp. 33-36
Author(s):  
Zhi Rong Liu ◽  
Qin Qin Tao ◽  
Chuan Xi Wen

Batch tests were used to investigate the effects of pH and contact time on the adsorption capability of peat. The results indicate that adsorption of uranyl ions on peat increase with increasing pH from 1 to 5. However it takes longer contact time to reach the adsorption equilibrium with increase of pH from 1 to 5. The adsorption process can be described by type 1 of the pseudo-second-order kinetics excellently.


2011 ◽  
Vol 8 (4) ◽  
pp. 1512-1521 ◽  
Author(s):  
A. Esmaeili ◽  
P. Beirami ◽  
S. Ghasemi

The batch removal of Ni2+from aqueous solution and wastewater using marine dried (MD) red algaeGracilariaand its activated carbon (AC) was studied. For these experiments, adsorption of Ni2+was used to form two biomasses of AC and MD. Both methods used different pH values, biomass and initial concentration of Ni2+. Subsequently adsorption models and kinetic studies were carried out. The maximum efficiencies of Ni2+removal were 83.55% and 99.04% for MD and AC respectively developed from it. The experimental adsorption data were fitted to the Langmuir adsorption model. The nickel(II) uptake by the biosorbents was best described by pseudo-second order rate model. The kinetic studies showed that the heavy metal uptake was observed more rapidly by the AC with compared to MD. AC method developed from MD biomass exhibited higher biosorption capacity. Adsorption capacity is related to the pH of solution, pH 5.0 is optimal for nickel. The maximum efficiencies of Ni2+removal were for AC method. The capacity is related to the pH of solution, pH 5.0 is optimal for nickel. The equilibrium adsorption data are correlated by Langmuir isotherm equation. The adsorption kinetic data can be described by the second order kinetic models


2020 ◽  
Author(s):  
Eman Alabbad

Abstract Background Water contamination has increasingly become a significant problem affecting the welfare of living organisms perceived to be aquatic beneficiaries. The nature and origin of the contaminant always determines the purification techniques. The most common contaminants in wastewater include organic compounds such as dyes that must be eliminated to enhance water purity and safety.Result The results indicate that the removal of DY50 by the modified chitosan was affected by the solution pH, sorbent dosage, initial DY50 concentration, contact time, and temperature. The experimental data were fitted to the Langmuir, Freundlich, and Temkin isotherms, and Langmuir isotherm showed the best fit. The kinetic data were fitted to the pseudo-first-order and pseudo-second-order rate equations. The removal rate was 97.9% by chemisorption components after the three hours at about 0.05 g of sorbent dose and 100 ppm of the Direct Yellow 50 dye initial concentration. The adsorption behavior of the modified chitosan for the removal of DY50 was well-described using the pseudo-second-order kinetic model, Intraparticle diffusion analysis was also conducted. The thermodynamic properties such as free energy (∆G), enthalpy (∆H), and entropy (∆S), in addition to the intra-particle diffusion rate were similarly defined.Conclusion The pH, initial DY50 concentration, sorbent dosage, adsorption temperature, and contact time had a significant effect on the adsorption of DY50 by chitosan-iso-vanillin.


2021 ◽  
pp. 1-12
Author(s):  
Raafia Najam ◽  
Syed Muzaffar Ali Andrabi

Sawdust of willow has been investigated as an adsorbent for the removal of Ni(II), and Cd(II) ions from aqueous solution. Since willow tree is widely grown in almost all parts of Kashmir, it can be a common most easily available, sustainable, low cost adsorbent for the treatment of wastewaters in this part of the world where growing industrialization is affecting water quality like elsewhere in the world. Therefore, it is worthwhile to investigate the potential of sawdust of willow tree as an adsorbent for the removal of Ni(II) and Cd(II) ions from aqueous solution as a first step. Batch experiments were conducted to study the effect of some parameters such as contact time, initial concentration of metal ions, solution pH and temperature. Langmuir and Freundlich models were employed for the mechanistic analysis of experimental data obtained. Results reveal that in our system adsorption follows the Langmuir isotherm. The maximum adsorption capacity of Ni(II) and Cd(II) were found to be 7.98 and 7.11 mg/g respectively at optimum conditions. The pseudo-first-order and pseudo-second-order models were employed for kinetic analysis of adsorption process. The adsorption process follows pseudo-second-order kinetics. The efficacy of the adsorbent in the treatment of effluent from fertilizer factory has been investigated and the results have been found encouraging.


2020 ◽  
Vol 15 ◽  
pp. 155892502091984
Author(s):  
Moussa Abbas ◽  
Zahia Harrache ◽  
Mohamed Trari

This study investigates the potential use of activated carbon, prepared from pomegranate peels, as an adsorbent activated using H3PO4 and its ability to remove crystal violet from an aqueous solution. The adsorbent was characterized by the Brunauer–Emmett–Teller method (specific surface area: 51.0674 m2 g−1) and point of zero charge (pHPZC = 5.2). However, some examined factors were found to have significant impacts on the adsorption capacity of activated carbon derived from pomegranate peels such as the initial dye concentration (5–15 mg L−1), solution pH (2–14), adsorbent dose (1–8 g L−1), agitation speed (100–700 r/min), and temperature (298–338 K). The best adsorption capacity was found at pH 11 with an adsorbent dose of 1 g L−1, an agitation speed at 400 r/min, and a contact time of 45 min. The adsorption mechanism of crystal violet onto activated carbon derived from pomegranate peels was studied using the pseudo-first-order, pseudo-second-order, Elovich, and Webber–Morris diffusion models. The adsorption kinetics were found to rather follow a pseudo-second order kinetic model with a determination coefficient ( R2) of 0.999. The equilibrium adsorption data for crystal violet adsorbed onto activated carbon derived from pomegranate peels were analyzed by the Langmuir, Freundlich, Elovich, and Temkin models. The results indicate that the Langmuir model provides the best correlation with qmax capacities of 23.26 and 76.92 mg g−1 at 27°C and 32°C, respectively. The adsorption isotherms at different temperatures have been used for the determination of thermodynamic parameters like the free energy, enthalpy, and entropy to predict the nature of adsorption process. The negative values Δ G0 (−5.221 to −1.571 kJ mol−1) and Δ H0 (−86.141 kJ mol−1) indicate that the overall adsorption is spontaneous and exothermic with a physisorption process. The adsorbent derived from pomegranate peels was found to be very effective and suitable for the removal of reactive dyes from aqueous solutions, due to its availability, low-cost preparation, and good adsorption capacity.


2015 ◽  
Vol 73 (2) ◽  
pp. 423-436 ◽  
Author(s):  
Çisem Kırbıyık ◽  
Ayşe Eren Pütün ◽  
Ersan Pütün

In this study, Fe(III) and Cr(III) metal ion adsorption processes were carried out with three adsorbents in batch experiments and their adsorption performance was compared. These adsorbents were sesame stalk without pretreatment, bio-char derived from thermal decomposition of biomass, and activated carbon which was obtained from chemical activation of biomass. Scanning electron microscopy and Fourier transform–infrared techniques were used for characterization of adsorbents. The optimum conditions for the adsorption process were obtained by observing the influences of solution pH, adsorbent dosage, initial solution concentration, contact time and temperature. The optimum adsorption efficiencies were determined at pH 2.8 and pH 4.0 for Fe(III) and Cr(III) metal ion solutions, respectively. The experimental data were modelled by different isotherm models and the equilibriums were well described by the Langmuir adsorption isotherm model. The pseudo-first-order, pseudo-second-order kinetic, intra-particle diffusion and Elovich models were applied to analyze the kinetic data and to evaluate rate constants. The pseudo-second-order kinetic model gave a better fit than the others. The thermodynamic parameters, such as Gibbs free energy change ΔG°, standard enthalpy change ΔH° and standard entropy change ΔS° were evaluated. The thermodynamic study showed the adsorption was a spontaneous endothermic process.


2014 ◽  
Vol 1073-1076 ◽  
pp. 955-959
Author(s):  
Ruo Zheng Li ◽  
Hong Yang ◽  
Xin Jin

Lignite activated carbon was provided through lignite which is treated specially. The adsorption capacity and mechanism of COD from Coal gasification wastewater by lignite activated carbon have been studied.The adsorption capacities of lignite activated carbon at different times were obtained by concentration of COD in the remainder solution. Three simplified kinetic models: pseudo-first-order, pseudo-second-order, intraparticle diffusion equations were adopted to examine the mechanism of the adsorption process. The results showed that the adsorption can be expressed by the pseudo-second-order model. The adsorption balance capacity was obtained as 50.8mg·g-1 (298K), and the adsorption balance capacity decreased with increasing of temperature, which showed that the adsorption process was exothermic. The adsorption activation energy (Ea) was calculated as 5.76kJ·mol-1, and it showed that the adsorption process was Physical adsorption. This study explored new treatment channels for lignite comprehensive utilization..


2012 ◽  
Vol 9 (1) ◽  
pp. 63-74 ◽  
Author(s):  
M. Ghaedi ◽  
S. J. Hossaini ◽  
S. Ramezani

Platinum nanoparticles loaded on activated carbon as novel adsorbent was successfully applied for efficient removal of congo red. The influences of effective parameters including contact time, pH and temperature, amount of adsorbents and concentration of initial dye on the efficiency of removal of congo red from aqueous solution were investigated. Adsorption experiments indicate that the extent of adsorption is strongly dependent on pH of solution. Thermodynamic parameters like Free energy of adsorption, enthalpy and entropy changes were calculated to know the nature of adsorption. The calculated values of free energy of adsorption (negative value) indicate that the adsorption process is spontaneous. The estimated values of enthalpy and entropy both show the positive sign, which indicate that the adsorption process is endothermic and the dye molecules are organized on the adsorbent surface in more randomly fashion than in solution. Fitting experimental data to different kinetic models including first order, pseudo second order and Elovich and intra-particle diffusion models shows that the rate of dye adsorption follows pseudo second order model and involvement of intera- particle diffusion mechanism.


2015 ◽  
Vol 73 (7) ◽  
pp. 1691-1699 ◽  
Author(s):  
Ahmed A. El-Refaey

This study compared the performance of cement kiln dust (CKD) as industrial byproduct and commercially activated carbon (AC) as adsorbent derived from agricultural waste for the removal of cadmium (Cd2+) from aqueous solutions. CKD and AC were characterized by Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) and surface areas demonstrate the differences of physicochemical properties. Batch equilibrium experiments were conducted for various intervals extended to 96 h at 20, 25 and 30°C to investigate the efficiency of the sorbents in the removal of Cd2+. CKD expressed high affinity for removal of Cd2+ and was not affected by temperature, while AC was significantly affected, which reflects dissimilarity in the retention mechanisms defendant in CKD and those pursued by AC. The results were explained by changes of FTIR and SEM images before and after sorption experiments. The suggestion is that electrostatic ion exchange and complex reactions are the main mechanisms for Cd2+ removal. The kinetic data were evaluated by fractional power, Elovich, pseudo-first order and pseudo-second-order kinetic models. The pseudo-second-order kinetic model was found to correlate with the experimental data well. These results revealed that CKD can be used as a cost-effective and efficient sorbent for Cd2+ removal in comparison with AC.


2020 ◽  
Vol 7 (1) ◽  
pp. 16-25
Author(s):  
Eman A. Alabbad

Introduction: Water pollution is a serious issue in several countries. In addition, because of limited water resources, the recycling of wastewater is crucial. Consequently, new and effective sorbents are required to reduce the cost of wastewater treatment as well as to mitigate the health problems caused by water pollution. Methods: In this study, the removal of Methyl Orange (MO) dye from wastewater using a chitosan-iso-vanillin polymer was evaluated. The removal of MO from an aqueous solution was studied in a batch system, using the modified chitosan polymer. Results: The results indicate that the removal of MO by the modified chitosan was affected by the solution pH, sorbent dosage, initial MO concentration, contact time, and temperature. The experimental data were fitted to the Langmuir, Freundlich, and Temkin isotherms, and Freundlich isotherm showed the best fit. The kinetic data were fitted to the pseudo-first-order and pseudo-second-order rate equations. Thus, the removal of MO was controlled via chemisorption, and the removal rate was 97.9% after 3 h at an initial MO concentration of 100 ppm and a sorbent dose of 0.05 g. The adsorption behavior of the modified chitosan for the removal of MO was well-described using the pseudo-second-order kinetic model. Intraparticle diffusion analysis was also conducted, and the thermodynamic properties, including entropy (∆S), enthalpy (∆H), and free energy (∆G), were determined. Conclusion: The pH, initial MO concentration, sorbent dosage, adsorption temperature, and contact time had a significant effect on the adsorption of MO by chitosan-iso-vanillin.


Sign in / Sign up

Export Citation Format

Share Document