Chelating modified cellulose bearing pendant heterocyclic moiety for effective removal of heavy metals

2019 ◽  
Vol 80 (8) ◽  
pp. 1549-1561
Author(s):  
R. Saravanan ◽  
R. Mahalakshmi ◽  
M. S. Karthikeyan ◽  
L. Ravikumar

Abstract Cellulose bearing pendant Schiff base with heterocyclic chelating groups (CMC-Bz) was synthesized, which were fully characterized using various instrumental techniques such as solid state carbon-13 nuclear magnetic resonance (13C-NMR), Fourier transform infrared (FTIR), scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDX) spectra. The adsorption of toxic metals onto cellulosic material was tested in a batch mode operation. The adsorption functional factors such as pH, adsorbent dose, metal ion concentration, equilibrium time and temperature were experimentally optimized for the maximum removal of Cu(II) and Pb(II) ions. Adsorption isotherms were evaluated with Langmuir, Freundlich, Temkin and Redlich–Peterson isotherms. Kinetic parameters and equilibrium adsorption capacities were investigated for pseudo-first-order, pseudo-second-order and intra-particle diffusion models. Thermodynamic parameters and reusability were also evaluated.

Author(s):  
Zineb Salem ◽  
Khedidja Allia

Effective removal of heavy metals from wastewater is one of the most important environmental challenges facing the world. Various techniques are used to remove the metals. Biosorption has gained credibility in the last decade because of its good performance and low cost. The objective of this study is to explore the use of olive pits for cadmium wastewater removal. The effects of mixing rate, pH, particle size, biomass and initial concentration and equilibrium metal ion concentration are evaluated. Results indicate nearly linear uptake by the biomass with increasing initial cadmium concentration. Adsorption increases rapidly in the pH range of 3-9, then levels off. Cadmium concentration uptake increase with increasing biomass concentration until reaching 5 g/L. Mixing rates up to 250 rpm increase uptake, however, higher mixing rates result in a vortex that incorporated air into the mixture, this resulted in a decrease in uptake. The adsorption isotherm appears to follow the Langmuir model.


2017 ◽  
Vol 82 (10) ◽  
pp. 1175-1191 ◽  
Author(s):  
Dragoslav Budimirovic ◽  
Zlate Velickovic ◽  
Zoran Bajic ◽  
Dragana Milosevic ◽  
Jasmina Nikolic ◽  
...  

The multistage synthesis of the multi-wall carbon nanotubes (MWCNT) modified with polyamidoamine dendrimers, A1/ and A2/MWCNT, capable of cation removal, is presented in this work, as well as novel adsorbents based on these precursor materials and modified with goethite nano-deposit, ?-FeOOH, A1/ and A2/MWCNT??-FeO(OH) adsorbents used for As(V) removal. In a batch test, the influence of pH, contact time, initial ion concentration and temperature on adsorption efficiency were studied. Adsorption data modelling by the Langmuir isotherm, revealed good adsorption capacities (in mg g-1) of 18.8 for As(V) and 60.1 and 44.2 for Pb2+ and Cd2+ on A2/MWCNT, respectively. Also, 27.6 and 29.8 mg g-1 of As(V) on A1/ and A2/MWCNT??-FeO(OH), respectively, were removed. Thermodynamic parameters showed that the adsorption is spontaneous and endothermic processes. Results of the study of influences of competitive ions: bicarbonate, sulfate, phosphate, silicate, chromate, fluoride and natural organic matter (NOM), i.e., humic acid (HA), showed the highest effect of phosphate on the decrease of arsenate adsorption. Time-dependent adsorption was best described by pseudo-second-order kinetic model and Weber?Morris model which predicted intra-particle diffusion as a rate-controlling step. Also, activation energy (Ea / kJ mol-1): 8.85 for Cd2+, 9.25 for Pb2+ and 7.98 for As(V), were obtained from kinetic data.


2011 ◽  
Vol 8 (1) ◽  
pp. 373-385 ◽  
Author(s):  
B. Sathyanarayana ◽  
K. Seshaiah

The sorption of manganese(II) and nickel(II) onto two adsorbents, kaolinite and bentonite from aqueous solution was studied in batch mode. Effect of pH, contact time, adsorbent dose, and initial metal ion concentration on adsorption was investigated. The adsorbents exhibit good sorption potential for manganese(II) and nickel(II) with a peak value at pH 5 and pH 6 respectively. More than 70% sorption occurred within 20 min for manganese(II) and nickel(II) and equilibrium was attained at 90 min. for manganese(II) and 120 min for nickel(II). Freundlich and Langmuir's mathematical models were used to describe batch adsorption. The adsorption was found to be favourable with respect to both the isotherms. The adsorption of the two metal ions from aqueous solution onto two adsorbents followed pseudo-second order kinetics.


2008 ◽  
Vol 5 (4) ◽  
pp. 761-769 ◽  
Author(s):  
S. Madhavakrishnan ◽  
K. Manickavasagam ◽  
K. Rasappan ◽  
P. S. Syed Shabudeen ◽  
R. Venkatesh ◽  
...  

Activated carbon prepared from Ricinus communis Pericarp was used to remove Ni(II) from aqueous solution by adsorption. Batch mode adsorption experiments are carried out by varying contact time, metal-ion concentration, carbon concentration and pH to assess kinetic and equilibrium parameters. The adsorption data were modeled by using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity (Qo) calculated from the Langmuir isotherm was 31.15 mg/g of activated carbon at initial pH of 5.0±0.2 for the particle size 125-250 µm.


2020 ◽  
Vol 11 (4) ◽  
pp. 11891-11904

In the present study, batch mode adsorption was carried out to investigate the adsorption capacity of dried bael flowers (Aegle marmelos) for the adsorptive removal of Cu(II) ions from aqueous solutions by varying agitation time, initial metal concentration, the dose of adsorbent, temperature, and initial pH of the Cu(II) ion solution. The percentage removal of 98.7% was observed at 50 ppm initial metal ion concentration, 0.5 g/100.00 cm3 adsorbent dosage, within the contact time of 120 minutes at 30 ºC in the pH range of 4 – 7. The sorption processes of Cu(II) ions was best described by pseudo-second-order kinetics. Langmuir isotherm had a good fit with the experimental data with 0.97 of correlation coefficient (R2), and the maximum adsorption capacity obtained was 23.14 mg g-1 at 30 ºC. The results obtained from sorption thermodynamic studies suggested that the adsorption process is exothermic and spontaneous. SEM analysis showed tubular voids on the adsorbent. FTIR studies indicated the presence of functional groups like hydroxyl, –C-O, –C=O, and amide groups in the adsorbent, which can probably involve in metal ion adsorption. Therefore, dried bael flowers can be considered an effective low-cost adsorbent for treating Cu(II) ions.


2019 ◽  
Vol 20 (2) ◽  
pp. 667-678
Author(s):  
Masooma Zawar ◽  
Rabia Nazir ◽  
Almas Hamid ◽  
Eder C. Lima ◽  
Muhammad Raza Shah

Abstract Groundwater contamination of fluoride is a serious global issue leading to its excessive intake and subsequently numerous adverse health issues. This research was designed to assess the efficiency of nanoadsorbent for removal of fluoride levels from water. For this purpose, calcium carbonate nanoparticles (average particle size 14.6 nm) were prepared and later applied for effective removal of fluoride from simulated as well as real drinking water (DW) samples collected from different areas of Lahore, Pakistan. The particles were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy/energy-dispersive X-ray spectroscopy, and atomic force microscopy. Physico-chemical parameters were studied in batch mode which revealed high adsorption capacity (i.e. 754.36 mg g−1) at room temperature and neutral pH within 10 min. The kinetic isotherms (general, pseudo-first, and pseudo-second order), diffusion studies (intra-particle diffusion and particle diffusion models), and adsorption models (Langmuir, Freundlich, Liu, and Redlich–Peterson) were also applied to evaluate the suitability of adsorption process. The applicability of nanoadsorbent to fluoride-contaminated real DW samples led to 98–100% efficacy of defluoridation.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
C. A. Cimá-Mukul ◽  
Youness Abdellaoui ◽  
Mohamed Abatal ◽  
Joel Vargas ◽  
Arlette A. Santiago ◽  
...  

Leucaena leucocephala is a potential source of polyphenols widely available in southern Mexico. This work highlights the extraction of polyphenols from Leucaena leucocephala leaves waste (LLEPs) and the evaluation of their efficiency to remove the single and multicomponent Pb(II) and Cd(II) metal ions from aqueous solutions. Batch test conditions were carried out to examine the effects of contact time, initial metal ion concentration, and adsorbent dosage on the biosorption process. The surface textures and the composition of the LLEP biosorbent was characterized using pH of point of zero charge (pHPZC), attenuated total reflectance Fourier transform infrared (ATR-FTIR), and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry, respectively. Further analysis using ATR-FTIR after adsorption contact of biosorbent was also investigated. The highest Langmuir saturation monolayer adsorption capacity, qm, for the removal of Pb(II) by LLEPs was obtained as 25.51 and 21.55 mg/g in mono- and bimetal solutions, respectively. The pseudo-second-order model provided the best fit for the kinetic data obtained for the removal of Pb(II), Cd(II), and their mixture, and the k2 values depend on the adsorbent mass. This implied that the chemisorption process might be the mechanism of the solute ions-LLEPs interaction in this study. Furthermore, nearly 100% removal of lead and cadmium individually and 95% of their mixture was found using 0.9 g of LLEPs.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Nacer Ferrah ◽  
Omar Abderrahim ◽  
Mohamed Amine Didi ◽  
Didier Villemin

A new chelating polymeric sorbent has been developed using polystyrene resin grafted with phosphonic acid. After characterization by FTIR and elementary analysis, the new resin has been investigated in liquid-solid extraction of cadmium(II). The results indicated that phosphonic resin could adsorb Cd(II) ion effectively from aqueous solution. The adsorption was strongly dependent on the pH of the medium and the optimum pH value level for better sorption was between 3.2 and 5.2. The influence of other analytical parameters including contact time, amount of resin, metal ion concentration, and the presence of some electrolytes was investigated. The maximum uptake capacity of Cd(II) ions was 37,9 mg·g−1grafted resin at ambient temperature, at an initial pH value of 5.0. The overall adsorption process was best described by pseudo second-order kinetic. When Freundlich and Langmuir isotherms were tested, the latter had a better fit with the experimental data. Furthermore, more than 92% of Cd(II) could be eluted by using 1.0 mol·L−1HCl in one cycle.


2015 ◽  
Vol 17 (3) ◽  
pp. 70-77 ◽  
Author(s):  
M. Kumar ◽  
G. Elangovan ◽  
R. Tamilarasan ◽  
G. Vijayakumar ◽  
P.C. Mukeshkumar ◽  
...  

Abstract This article presents the feasibility for the removal of Aniline Blue dye (AB dye) from aqueous solution using a low cost biosorbent material Zizyphus oenoplia seeds. In this study, a batch mode experiments of the adsorption process were carried out as a function of pH, contact time, concentration of dye, adsorbent dosage and temperature. The experimental data were fitted with Freundlich and Langmuir isotherm equations. The feasibility of the isotherm was evaluated with dimensionless separation factor (RL). The kinetic data of sorption process are evaluated by using pseudo-first order and pseudo-second order equations. The mode of diffusion process was evaluated with intra-particle diffusion model. The thermodynamic parameters like change in enthalpy (ΔHº); change in entropy (ΔSº) and Gibbs free energy change (ΔGº) were calculated using Van’t Hoff plot. The biosorbent material was characterized with Fourier Transform Infrared (FTIR) spectroscopy and the morphology was identified with Scanning Electron Microscope (SEM) in before and after adsorption of AB dye.


2016 ◽  
Vol 74 (7) ◽  
pp. 1644-1657 ◽  
Author(s):  
Mona El-Sayed ◽  
Gh. Eshaq ◽  
A. E. ElMetwally

In our study, Mg–Al–Zn mingled oxides were prepared by the co-precipitation method. The structure, composition, morphology and thermal stability of the synthesized Mg–Al–Zn mingled oxides were analyzed by powder X-ray diffraction, Fourier transform infrared spectrometry, N2 physisorption, scanning electron microscopy, differential scanning calorimetry and thermogravimetry. Batch experiments were performed to study the adsorption behavior of cobalt(II) and nickel(II) as a function of pH, contact time, initial metal ion concentration, and adsorbent dose. The maximum adsorption capacity of Mg–Al–Zn mingled oxides for cobalt and nickel metal ions was 116.7 mg g−1, and 70.4 mg g−1, respectively. The experimental data were analyzed using pseudo-first- and pseudo-second-order kinetic models in linear and nonlinear regression analysis. The kinetic studies showed that the adsorption process could be described by the pseudo-second-order kinetic model. Experimental equilibrium data were well represented by Langmuir and Freundlich isotherm models. Also, the maximum monolayer capacity, qmax, obtained was 113.8 mg g−1, and 79.4 mg g−1 for Co(II), and Ni(II), respectively. Our results showed that Mg–Al–Zn mingled oxides can be used as an efficient adsorbent material for removal of heavy metals from industrial wastewater samples.


Sign in / Sign up

Export Citation Format

Share Document