scholarly journals Does influent C/N ratio affect pollutant removal and greenhouse gas emission in wastewater ecological soil infiltration systems with/without intermittent aeration?

2020 ◽  
Vol 81 (4) ◽  
pp. 668-678
Author(s):  
Junling Pang ◽  
Mo Yang ◽  
Deli Tong ◽  
Xu Fu ◽  
Linli Huang ◽  
...  

Abstract Wastewater ecological soil infiltration system (WESIS) is a land treatment technology for decentralized wastewater treatment that has been applied all over the world. In this study, the pollutant removal, emission of greenhouse gases (GHGs) and functional gene abundances with different influent C/N ratios were evaluated in WESISs with/without intermittent aeration. Intermittent aeration and influent C/N ratio affect pollutant removal and GHG emission. Increased influent C/N ratio led to high total nitrogen (TN) removal, low CH4 and N2O emission in the aerated WESIS, which was different from the non-aerated WESIS. High average removal efficiencies of chemical oxygen demand (COD) (94.8%), NH4+-N (95.1%), TN (91.2%), total phosphorus (TP) (91.1%) and low emission rates for CH4 (27.2 mg/(m2 d)) and N2O (10.5 mg/(m2 d)) were achieved with an influent C/N ratio of 12:1 in the aerated WESIS. Intermittent aeration enhanced the abundances of bacterial 16S rRNA, amoA, nxrA, narG, napA, nirK, nirS, qnorB, nosZ genes and decreased the abundances of the mcrA gene, which are involved in pollutant removal and GHG emission. Intermittent aeration would be an effective alternative to achieving high pollutant removal and low CH4 and N2O emission in high influent C/N ratio wastewater treatment.

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 210
Author(s):  
Tang Liu ◽  
Shufeng Liu ◽  
Shishi He ◽  
Zhichao Tian ◽  
Maosheng Zheng

To explore the main behavior and mechanism of minimizing nitrous oxide (N2O) emission through intermittent aeration during wastewater treatment, two lab-scale sequencing batch reactors operated at intermittently aerated mode (SBR1), and continuously aerated mode (SBR2) were established. Compared with SBR2, the intermittently aerated SBR1 reached not only a higher total nitrogen removal efficiency (averaged 93.5%) but also a lower N2O-emission factor (0.01–0.53% of influent ammonia), in which short-cut nitrification and denitrification were promoted. Moreover, less accumulation and consumption of polyhydroxyalkanoates, a potential endogenous carbon source promoting N2O emission, were observed in SBR1. Batch experiments revealed that nitrifier denitrification was the major pathway generating N2O while heterotrophic denitrification played as a sink of N2O, and SBR1 embraced a larger N2O-mitigating capability. Finally, quantitative polymerase chain reaction results suggested that the abundant complete ammonia oxidizer (comammox) elevated in the intermittently aerated environment played a potential role in avoiding N2O generation during wastewater treatment. This work provides an in-depth insight into the utilization of proper management of intermittent aeration to control N2O emission from wastewater treatment plants.


2017 ◽  
Vol 76 (7) ◽  
pp. 1907-1914 ◽  
Author(s):  
Qiao Yang ◽  
Yang Lin ◽  
Lifen Liu ◽  
Fenglin Yang

A competitive sewage treatment technology should meet the standard of water quality requirement and accomplish recovery of potential energy. This study presents such a new system, with coupled membrane bioreactor-microbial fuel cell features, which can not only treat wastewater, but also recovers energy from wastewater by electricity generation, and form a new resource by photosynthesis while providing the dissolved oxygen by algae. Specifically, in the system, the MnO2/polyaniline is used to modify the stainless steel mesh and to function well as system membrane and cathode, with satisfactory filtration and catalysis performance. The system enables continuous wastewater treatment with stable pollutant removal and electricity generation. Under the membrane flux of 119.4 Lm−2 h−1, a maximum power density of 1.2 W m−3 can be achieved, the algae multiply 6.1 times, and satisfactory wastewater treatment effect is achieved.


2016 ◽  
Vol 56 (3) ◽  
pp. 330 ◽  
Author(s):  
Takahiro Yamashita ◽  
Makoto Shiraishi ◽  
Ryoko Yamamoto-Ikemoto ◽  
Hiroshi Yokoyama ◽  
Akifumi Ogino ◽  
...  

From a global warming perspective it is important to control emissions of methane (CH4) and nitrous oxide (N2O) from excreta and manure management. To mitigate emissions of N2O during swine wastewater treatment, we examined aerobic treatment technologies that use carbon fibre carriers as an alternative to conventional activated sludge treatment. We used scaled-up experiment equipment (water volume, 700 L) to evaluate the treatment performance. The N2O emission factor was 0.008 g N2O-N/g total N load in an aerobic bioreactor packed with carbon fibres (CF reactor), compared with 0.021 gN2O-N/g total N load in an activated sludge reactor (AS reactor). The CF treatment reduced N2O emissions by more than 60% compared with the AS treatment. Combined CH4 and N2O emissions from the CF reactor were 504 g-CO2 eq/m3.day, whereas those from the AS reactor were 1333 g-CO2 eq/m3.day. Interestingly, N2O emissions from the CF reactor were reduced even when nitrate and nitrite accumulated.


2020 ◽  
pp. 1024-1031
Author(s):  
Adilson Amorim Brandão ◽  
Eduardo Guimarães Couto ◽  
Renato de Aragão Ribeiro Rodrigues ◽  
Oscarlina Lúcia Santos Weber ◽  
Osvaldo Borges Pinto Júnior

Soils have important roles in the global budgets of the greenhouse gases. The liquid pig slurry (LPS) in pastures has high potential as a fertilizer but could have a direct influence on emission of greenhouse gasses. This study evaluated the effects of the application of LPS and inorganic mineral fertilization during the rainy and dry seasons on the emissions of CO2, CH4 and N2O in pastures planted with Tifton-85. The following treatments were tested: Control - no fertilization; LPS30 - 30 m3 ha-1; LPS60 - 60 m3 ha-1; LPS90 - 90 m3 ha-1 and inorganic mineral fertilization. Gasses were sampled using static chambers first during the months of March and April, then in June and July. Fertilization with LPS caused an increase in the flux of CO2 and CH4 during the first hours after its application, and CO2 emissions are greater during the rainy than in the dry season. However, the application of LPS in Tifton-85 pasture during rainy periods did not show high potential for emission of CO2, in contrast to application during the dry season. Fertilization with LPS increases the emission of N2O, and this varies as a function of the volume of LPS applied and the experimental conditions experimental conditions. The application of LPS in Tifton-85 pasture has a high potential for N2O emission during the rainy season, but the magnitude is similar to that resulting from inorganic mineral fertilization.


1982 ◽  
Vol 14 (1-2) ◽  
pp. 121-133
Author(s):  
C Forsberg ◽  
B Hawerman ◽  
B Hultman

Experience from advanced municipal wastewater treatment plants and recovery of polluted waters are described for the last ten years in Sweden. Except in municipalities with large recipients, the urban population is served by treatment plants with combined biological and chemical treatment. Most of these plants are post-precipitation plants. Several modified operational modes have been developed in order to improve the removal efficiencies of pollutants and to reduce the costs. Results are presented on the recovery of specially investigated lakes with a lowered supply of total phosphorus and organic matter.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 337
Author(s):  
Sara Mesa Medina ◽  
Ana Rey ◽  
Carlos Durán-Valle ◽  
Ana Bahamonde ◽  
Marisol Faraldos

Two commercial activated carbon were functionalized with nitric acid, sulfuric acid, and ethylenediamine to induce the modification of their surface functional groups and facilitate the stability of corresponding AC-supported iron catalysts (Fe/AC-f). Synthetized Fe/AC-f catalysts were characterized to determine bulk and surface composition (elemental analysis, emission spectroscopy, XPS), textural (N2 isotherms), and structural characteristics (XRD). All the Fe/AC-f catalysts were evaluated in the degradation of phenol in ultrapure water matrix by catalytic wet peroxide oxidation (CWPO). Complete pollutant removal at short reaction times (30–60 min) and high TOC reduction (XTOC = 80 % at ≤ 120 min) were always achieved at the conditions tested (500 mg·L−1 catalyst loading, 100 mg·L−1 phenol concentration, stoichiometric H2O2 dose, pH 3, 50 °C and 200 rpm), improving the results found with bare activated carbon supports. The lability of the interactions of iron with functionalized carbon support jeopardizes the stability of some catalysts. This fact could be associated to modifications of the induced surface chemistry after functionalization as a consequence of the iron immobilization procedure. The reusability was demonstrated by four consecutive CWPO cycles where the activity decreased from 1st to 3rd, to become recovered in the 4th run. Fe/AC-f catalysts were applied to treat two real water matrices: the effluent of a wastewater treatment plant with a membrane biological reactor (WWTP-MBR) and a landfill leachate, opening the opportunity to extend the use of these Fe/AC-f catalysts for complex wastewater matrices remediation. The degradation of phenol spiked WWTP-MBR effluent by CWPO using Fe/AC-f catalysts revealed pH of the reaction medium as a critical parameter to obtain complete elimination of the pollutant, only reached at pH 3. On the contrary, significant TOC removal, naturally found in complex landfill leachate, was obtained at natural pH 9 and half stoichiometric H2O2 dose. This highlights the importance of the water matrix in the optimization of the CWPO operating conditions.


Author(s):  
Manoj Kumar ◽  
Rajesh Singh

In the present study area-based, pollutant removal kinetic analysis was considered using the Zero-order, first-order decay and efficiency loss (EL) models in the constructed wetlands (CWs) for municipal wastewater treatment....


Sign in / Sign up

Export Citation Format

Share Document