Heterologous expression and characterization of flavinadenine dinucleotide synthetase from Candida famata for flavin adenine dinucleotide production

2020 ◽  
Vol 27 ◽  
Author(s):  
Guoqiang Zhou ◽  
Qiaoqiao Pan ◽  
Zeyu Hu ◽  
Juanping Qiu ◽  
Zhiliang Yu

Background: Flavin adenine dinucleotide (FAD) is a redox-active coenzyme that regulates several important enzymatic reactions during metabolism. FAD is used in the medicinal and food industries and FAD supplements have been used to treat some inheritable diseases. FAD can be biosynthesized from flavin mononucleotide (FMN) and adenosine triphosphate (ATP), catalyzed by FAD synthetase (FADS). Objective: The aim of this study was to heterologously express the gene encoding FADS from the flavinogenic yeast Candida famata (FADSCf) for biosynthesis of FAD. Methods: The sequence encoding FADSCf was retrieved and heterologously expressed in Escherichia coli. The structure and enzymatic properties of recombinant FADSCf were characterized. Results: FADSCf (279 amino acids) was successfully expressed in E. coli BL21 (DE3), with a theoretical molecular weight of 32299.79 Da and an isoelectric point of 6.09. Secondary structural analysis showed that the number of α-helices was 2-fold higher than the number of β-sheets, indicating that the protein was highly hydrophilic. Under fixed ATP concentration, FADSCf had a Km of 0.04737±0.03158 mM and a Vmax of 3.271±0.79 μM/min/mg. Under fixed FMN concentration, FADSCf had a Km of 0.1214±0.07464 mM and a Vmax of 2.6695±0.3715 μM/min/mg. Enzymatic reactions in vitro showed that expressed FADSCf could form 80 mM of FAD per mg of enzyme after 21 hours under the following conditions: 0.5 mM FMN, 5 mM ATP and 10 mM Mg2+ . Conclusion: Under optimized conditions (0.5 mM FMN, 5 mM ATP and 10 mM Mg2+), the production of FAD reached 80 mM per mg of FADSCf after a 21-hour reaction. Our results indicate that purified recombinant FADSCf can be used for the biosynthesis of FAD.

2000 ◽  
Vol 66 (7) ◽  
pp. 2811-2816 ◽  
Author(s):  
Yasuhiro Mihara ◽  
Takashi Utagawa ◽  
Hideaki Yamada ◽  
Yasuhisa Asano

ABSTRACT A novel nucleoside phosphorylation process using the food additive pyrophosphate as the phosphate source was investigated. TheMorganella morganii gene encoding a selective nucleoside pyrophosphate phosphotransferase was cloned. It was identical to theM. morganii PhoC acid phosphatase gene. Sequential in vitro random mutagenesis was performed on the gene by error-prone PCR to construct a mutant library. The mutant library was introduced intoEscherichia coli, and the transformants were screened for the production of 5′-IMP. One mutated acid phosphatase with an increased phosphotransferase reaction yield was obtained. With E. coli overproducing the mutated acid phosphatase, 101 g of 5′-IMP per liter (192 mM) was synthesized from inosine in an 88% molar yield. This improvement was achieved with two mutations, Gly to Asp at position 92 and Ile to Thr at position 171. A decreasedKm value for inosine was responsible for the increased productivity.


Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 292
Author(s):  
Aleksandra Głowacka-Rutkowska ◽  
Magdalena Ulatowska ◽  
Joanna Empel ◽  
Magdalena Kowalczyk ◽  
Jakub Boreczek ◽  
...  

Staphylococcal bacteriophages of the Kayvirus genus are candidates for therapeutic applications. One of their proteins, Tgl, is slightly similar to two staphylococcal virulence factors, secreted autolysins of lytic transglycosylase motifs IsaA and SceD. We show that Tgl is a lytic enzyme secreted by the bacterial transport system and localizes to cell peripheries like IsaA and SceD. It causes lysis of E. coli cells expressing the cloned tgl gene, but could be overproduced when depleted of signal peptide. S. aureus cells producing Tgl lysed in the presence of nisin, which mimics the action of phage holin. In vitro, Tgl protein was able to destroy S. aureus cell walls. The production of Tgl decreased S. aureus tolerance to vancomycin, unlike the production of SceD, which is associated with decreased sensitivity to vancomycin. In the genomes of kayviruses, the tgl gene is located a few genes away from the lysK gene, encoding the major endolysin. While lysK is a late phage gene, tgl can be transcribed by a host RNA polymerase, like phage early genes. Taken together, our data indicate that tgl belongs to the kayvirus lytic module and encodes an additional endolysin that can act in concert with LysK in cell lysis.


2001 ◽  
Vol 183 (17) ◽  
pp. 5198-5202 ◽  
Author(s):  
Pongpan Laksanalamai ◽  
Dennis L. Maeder ◽  
Frank T. Robb

ABSTRACT The small heat shock protein (sHSP) from the hyperthermophilePyrococcus furiosus was specifically induced at the level of transcription by heat shock at 105°C. The gene encoding this protein was cloned and overexpressed in Escherichia coli. The recombinant sHSP prevented the majority of E. coli proteins from aggregating in vitro for up to 40 min at 105°C. The sHSP also prevented bovine glutamate dehydrogenase from aggregating at 56°C. Survivability of E. colioverexpressing the sHSP was enhanced approximately sixfold during exposure to 50°C for 2 h compared with the control culture, which did not express the sHSP. Apparently, the sHSP confers a survival advantage on mesophilic bacteria by preventing protein aggregation at supraoptimal temperatures.


2014 ◽  
Vol 58 (12) ◽  
pp. 7225-7233 ◽  
Author(s):  
Jascha Vervoort ◽  
Basil Britto Xavier ◽  
Andrew Stewardson ◽  
Samuel Coenen ◽  
Maciek Godycki-Cwirko ◽  
...  

ABSTRACTNitrofurantoin has been used for decades for the treatment of urinary tract infections (UTIs), but clinically significant resistance inEscherichia coliis uncommon. Nitrofurantoin concentrations in the gastrointestinal tract tend to be low, which might facilitate selection of nitrofurantoin-resistant (NIT-R) strains in the gut flora. We subjected two nitrofurantoin-susceptible intestinalE. colistrains (ST540-p and ST2747-p) to increasing nitrofurantoin concentrations under aerobic and anaerobic conditions. Whole-genome sequencing was performed for both susceptible isolates and selected mutants that exhibited the highest nitrofurantoin resistance levels aerobically (ST540-a and ST2747-a) and anaerobically (ST540-an and ST2747-an). ST540-a/ST540-an and ST2747-a (aerobic MICs of >64 μg/ml) harbored mutations in the known nitrofurantoin resistance determinantsnfsAand/ornfsB, which encode oxygen-insensitive nitroreductases. ST2747-an showed reduced nitrofurantoin susceptibility (aerobic MIC of 32 μg/ml) and exhibited remarkable growth deficits but did not harbornfsA/nfsBmutations. We identified a 12-nucleotide deletion inribE, encoding lumazine synthase, an essential enzyme involved in the biosynthesis of flavin mononucleotide (FMN), which is an important cofactor for NfsA and NfsB. Complementing ST2747-an with a functional wild-type lumazine synthase restored nitrofurantoin susceptibility. Six NIT-RE. coliisolates (NRCI-1 to NRCI-6) from stools of UTI patients treated with nitrofurantoin, cefuroxime, or a fluoroquinolone harbored mutations innfsAand/ornfsBbut notribE. Sequencing of theribEgene in six intestinal and three urinaryE. colistrains showing reduced nitrofurantoin susceptibility (MICs of 16 to 48 μg/ml) also did not identify any relevant mutations. NRCI-1, NRCI-2, and NRCI-5 exhibited up to 4-fold higher anaerobic MICs, compared to the mutants generatedin vitro, presumably because of additional mutations in oxygen-sensitive nitroreductases.


1993 ◽  
Vol 289 (1) ◽  
pp. 81-85 ◽  
Author(s):  
J Quinn ◽  
A G Diamond ◽  
A K Masters ◽  
D E Brookfield ◽  
N G Wallis ◽  
...  

The dihydrolipoamide acetyltransferase subunit (E2p) of mammalian pyruvate dehydrogenase complex has two highly conserved lipoyl domains each modified with a lipoyl cofactor bound in amide linkage to a specific lysine residue. A sub-gene encoding the inner lipoyl domain of human E2p has been over-expressed in Escherichia coli. Two forms of the domain have been purified, corresponding to lipoylated and non-lipoylated species. The apo-domain can be lipoylated in vitro with partially purified E. coli lipoate protein ligase, and the lipoylated domain can be reductively acetylated by human E1p (pyruvate dehydrogenase). Availability of the two forms will now allow detailed biochemical and structural studies of the human lipoyl domains.


Author(s):  
Ashwini Kumar Ray ◽  
Paula B. Luis ◽  
Surabhi Kirti Mishra ◽  
Daniel P. Barry ◽  
Mohammad Asim ◽  
...  

Curcumin is a potential natural remedy for preventing Helicobacter pylori-associated gastric inflammation and cancer. Here, we analyzed the effect of a phospholipid formulation of curcumin on H. pylori growth, translocation and phosphorylation of the virulence factor CagA and host protein kinase Src in vitro and in an in vivo mouse model of H. pylori infection. Growth of H. pylori was inhibited dose-dependently by curcumin in vitro. H. pylori was unable to metabolically reduce curcumin, whereas two enterobacteria, E. coli and Citrobacter rodentium, which efficiently reduced curcumin to the tetra- and hexahydro metabolites, evaded growth inhibition. Oxidative metabolism of curcumin was required for the growth inhibition of H. pylori and the translocation and phosphorylation of CagA and cSrc, since acetal- and diacetal-curcumin that do not undergo oxidative transformation were ineffective. Curcumin attenuated mRNA expression of the H. pylori virulence genes cagE and cagF in a dose-dependent manner and inhibited translocation and phosphorylation of CagA in gastric epithelial cells. H. pylori strains isolated from dietary curcumin-treated mice showed attenuated ability to induce cSrc phosphorylation and the mRNA expression of the gene encoding for IL-8, suggesting long-lasting effects of curcumin on the virulence of H. pylori. Our work provides mechanistic evidence that encourages testing of curcumin as a dietary approach to inhibit the virulence of CagA.


1973 ◽  
Vol 51 (6) ◽  
pp. 772-782 ◽  
Author(s):  
A. G. Fazekas ◽  
T. Sandor

2-14C-Riboflavin was injected subcutaneously into young adult rats to study the biosynthesis of flavin mononucleotide (FMN) and flavin–adenine dinucleotide (FAD) in the liver and kidneys. Animals were sacrificed at different time intervals following the administration of labelled riboflavin (RF), and radioactive flavins were determined in their tissues by a newly devised method. Both tissues accumulated radioactive riboflavin rapidly and peak levels were obtained at 90 min after the injection, when over 80% of the total radioactivity of the liver was present in FAD. At this time the liver contained 17% of the injected dose of 2-14C-RF. The kidneys contained relatively high quantities of free RF due to the concentration and urinary excretion of the vitamin.Analysis of subcellular fractions of the liver of animals injected with 2-14C-RF revealed that most of the radioactivity was present in mitochondria and nuclei. The flavin nucleotides of rat liver cytosol became progressively associated with macromolecules in vivo. However, there was no significant binding of free RF by macromolecules in blood plasma or liver cytosol.Kinetic studies and incubations with liver slices indicated that RF freely diffuses into the liver cells, is rapidly converted into FAD, and becomes attached to apoenzymes. The tissue uptake of RF and FMN formation is considerably influenced by the concentration of RF present in the system, both in vivo and in vitro.


2018 ◽  
Vol 200 (10) ◽  
Author(s):  
Kyle C. Costa ◽  
Leon S. Moskatel ◽  
Lucas A. Meirelles ◽  
Dianne K. Newman

ABSTRACT Phenazines are a class of bacterially produced redox-active metabolites that are found in natural, industrial, and clinical environments. In Pseudomonas spp., phenazine-1-carboxylic acid (PCA)—the precursor of all phenazine metabolites—facilitates nutrient acquisition, biofilm formation, and competition with other organisms. While the removal of phenazines negatively impacts these activities, little is known about the genes or enzymes responsible for phenazine degradation by other organisms. Here, we report that the first step of PCA degradation by Mycobacterium fortuitum is catalyzed by a ph enazine- d egrading decarboxylase (PhdA). PhdA is related to members of the UbiD protein family that rely on a prenylated flavin mononucleotide cofactor for activity. The gene for PhdB, the enzyme responsible for cofactor synthesis, is present in a putative operon with the gene encoding PhdA in a region of the M. fortuitum genome that is essential for PCA degradation. PhdA and PhdB are present in all known PCA-degrading organisms from the Actinobacteria . M. fortuitum can also catabolize other Pseudomonas -derived phenazines such as phenazine-1-carboxamide, 1-hydroxyphenazine, and pyocyanin. On the basis of our previous work and the current characterization of PhdA, we propose that degradation converges on a common intermediate: dihydroxyphenazine. An understanding of the genes responsible for degradation will enable targeted studies of phenazine degraders in diverse environments. IMPORTANCE Bacteria from phylogenetically diverse groups secrete redox-active metabolites that provide a fitness advantage for their producers. For example, phenazines from Pseudomonas spp. benefit the producers by facilitating anoxic survival and biofilm formation and additionally inhibit competitors by serving as antimicrobials. Phenazine-producing pseudomonads act as biocontrol agents by leveraging these antibiotic properties to inhibit plant pests. Despite this importance, the fate of phenazines in the environment is poorly understood. Here, we characterize an enzyme from Mycobacterium fortuitum that catalyzes the first step of phenazine-1-carboxylic acid degradation. Knowledge of the genetic basis of phenazine degradation will facilitate the identification of environments where this activity influences the microbial community structure.


2010 ◽  
Vol 426 (3) ◽  
pp. 271-280 ◽  
Author(s):  
Arvind Anand ◽  
Brian T. Duk ◽  
Sandeep Singh ◽  
Meltem Y. Akbas ◽  
Dale A. Webster ◽  
...  

The bacterial haemoglobin from Vitreoscilla, VHb, displays several unusual properties that are unique among the globin family. When the gene encoding VHb, vgb, is expressed from its natural promoter in either Vitreoscilla or Escherichia coli, the level of VHb increases more than 50-fold under hypoxic conditions and decreases significantly during oxidative stress, suggesting similar functioning of the vgb promoter in both organisms. In the present study we show that expression of VHb in E. coli induced the antioxidant genes katG (catalase–peroxidase G) and sodA (superoxide dismutase A) and conferred significant protection from oxidative stress. In contrast, when vgb was expressed in an oxyR mutant of E. coli, VHb levels increased and the strain showed high sensitivity to oxidative stress without induction of antioxidant genes; this indicates the involvement of the oxidative stress regulator OxyR in mediating the protective effect of VHb under oxidative stress. A putative OxyR-binding site was identified within the vgb promoter and a gel-shift assay confirmed its interaction with oxidized OxyR, an interaction which was disrupted by the reduced form of the transcriptional activator Fnr (fumurate and nitrate reductase). This suggested that the redox state of OxyR and Fnr modulates their interaction with the vgb promoter. VHb associated with reduced OxyR in two-hybrid screen experiments and in vitro, converting it into an oxidized state in the presence of NADH, a condition where VHb is known to generate H2O2. These observations unveil a novel mechanism by which VHb may transmit signals to OxyR to autoregulate its own biosynthesis, simultaneously activating oxidative stress functions. The activation of OxyR via VHb, reported in the present paper for the first time, suggests the involvement of VHb in transcriptional control of many other genes as well.


2022 ◽  
Author(s):  
James A Sawitzke ◽  
Nina C Costantino ◽  
Ellen Hutchinson ◽  
Lynn Thomason ◽  
Donald L Court

Assembly of intact, replicating plasmids from linear DNA fragments introduced into bacterial cells, i.e. in vivo cloning, is a facile genetic engineering technology that avoids many of the problems associated with standard in vitro cloning. Here we report characterization of various parameters of in vivo linear DNA assembly mediated by either the RecET recombination system or the bacteriophage λ Red recombination system. As previously observed, RecET is superior to Red for this reaction when the terminal homology is 50 bases. Deletion of the E. coli xonA gene, encoding Exonuclease I, a 3′→5′ single-strand DNA exonuclease, substantially improves the efficiency of in vivo linear DNA assembly for both systems. Deletion of ExoI function allowed robust RecET assembly of six DNA segments to create a functional plasmid. The linear DNAs are joined accurately with very few errors. This discovery provides a significant improvement to previously reported in vivo linear DNA assembly technologies.


Sign in / Sign up

Export Citation Format

Share Document