Clinical therapy of patients contaminated with Polonium or Plutonium

2020 ◽  
Vol 27 ◽  
Author(s):  
Jan Aaseth ◽  
Valeria Marina Nurchi ◽  
Ole Andersen

: Although most of the harmful radionuclides are of anthropogenic origin and released from military or industrial processes, radioactive substances also occur naturally in the environment, e.g. uranium. Low standards of nuclear facilities can lead to contamination of employees with radionuclides due to inhalation of gases or dust, or contamination of skin or wounds. Various sources for radionuclide exposure may represent concerns for radioactive polonium or plutonium exposure, for instance terrorist actions on the infrastructure such as on drinking water basins. Early health effects after extensive radiation exposure may be vomiting, headaches, and fatigue, followed by bone marrow depression, fever, and diarrhea. The main purpose of radionuclide mobilization is to minimize the radiation dose. Since some of the important radionuclides such as polonium and plutonium have very long biological half-times after their deposition in bone, liver or kidneys, rapid initiation of chelation treatment is usually imperative after a contamination event. The antidote DMPS (dimercaptopropanesulfonate is considered the drug of choice for polonium decorporation. DTPA (diethylenetriamine pentaacetate) is a potent chelator especially approved for radionuclide mobilization, including polonium and other actinides. Other chelators and drugs are under investigation as potential chelators of transuranic elements.

1967 ◽  
Vol 06 (02) ◽  
pp. 170-183
Author(s):  
K. Šilink ◽  
J. Němec ◽  
J. Kubal ◽  
S. Röhling ◽  
S. Vohnout

SummaryThe clinical course and the haematologic events in a patient suffering from metastatic thyroid cancer after administration of 806 mCi of 131I are described. A serious bone marrow depression developed and was treated successfully. The haematological changes during the early and late phases of the radiation injury were studied in detail and compared with those after external irradiation. The haematological events after internal irradiation with 131I are characterised by initial neutrophilic leukocytosis, protracted lymphopenia, slowly developing anaemia reaching lowest values about 3 months after administration, erythroid hyperplasia in the bone marrow after recovery from bone marrow depression and prominent cytological features of the bone marrow, especially pronounced erythropoietic polyploidy.


2020 ◽  
Vol 4 (2) ◽  
pp. 722-729
Author(s):  
Usman Sani ◽  
Bashir Gide Muhammad ◽  
Dimas Skam Joseph ◽  
D. Z. Joseph

Poor implementation of quality assurance programs in the radiation industry has been a major setback in our locality. Several studies revealed that occupational workers are exposed to many potential hazards of ionizing radiation during radio-diagnostic procedures, yet radiation workers are often not monitored. This study aims to evaluate the occupational exposure of the radiation workers in Federal Medical Centre Katsina, and to compare the exposure with recommended occupational radiation dose limits. The quarterly readings of 20 thermo-luminescent dosimeters (TLDs') used by the radiation workers from January to December, 2019 were collected from the facility's radiation monitoring archive, and subsequently assessed and analyzed. The results indicate that the average annual equivalent dose per occupational worker range from 0.74 to 1.20 mSv and 1.28 to 2.21 mSv for skin surface and deep skin dose, measured at 10 mm and 0.07 mm tissue depth respectively. The occupational dose was within the recommended national and international limits of 5 mSv per annum or an average of 20 mSv in 5 years. Therefore, there was no significant radiation exposure to all the occupational workers in the study area. Though, the occupational radiation dose is within recommended limit, this does not eliminate stochastic effect of radiation. The study recommended that the occupational workers should adhere and strictly comply with the principles of radiation protection which includes distance, short exposure time, shielding and proper monitoring of dose limits. Furthermore, continuous training of the radiation workers is advised.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1209
Author(s):  
Gabriel Keller ◽  
Simon Götz ◽  
Mareen Sarah Kraus ◽  
Leonard Grünwald ◽  
Fabian Springer ◽  
...  

This study analyzed the radiation exposure of a new ultra-low dose (ULD) protocol compared to a high-quality (HQ) protocol for CT-torsion measurement of the lower limb. The analyzed patients (n = 60) were examined in the period March to October 2019. In total, 30 consecutive patients were examined with the HQ and 30 consecutive patients with the new ULD protocol comprising automatic tube voltage selection, automatic exposure control, and iterative image reconstruction algorithms. Radiation dose parameters as well as the contrast-to-noise ratio (CNR) and diagnostic confidence (DC; rated by two radiologists) were analyzed and potential predictor variables, such as body mass index and body volume, were assessed. The new ULD protocol resulted in significantly lower radiation dose parameters, with a reduction of the median total dose equivalent to 0.17 mSv in the ULD protocol compared to 4.37 mSv in the HQ protocol (p < 0.001). Both groups showed no significant differences in regard to other parameters (p = 0.344–0.923). CNR was 12.2% lower using the new ULD protocol (p = 0.033). DC was rated best by both readers in every HQ CT and in every ULD CT. The new ULD protocol for CT-torsion measurement of the lower limb resulted in a 96% decrease of radiation exposure down to the level of a single pelvic radiograph while maintaining good image quality.


1989 ◽  
Vol 119 (1) ◽  
pp. 176 ◽  
Author(s):  
R. A. Kleinerman ◽  
L. G. Littlefield ◽  
R. E. Tarone ◽  
S. G. MacHado ◽  
M. Blettner ◽  
...  

2004 ◽  
Vol 22 (12) ◽  
pp. 2452-2460 ◽  
Author(s):  
Steven G. DuBois ◽  
Julia Messina ◽  
John M. Maris ◽  
John Huberty ◽  
David V. Glidden ◽  
...  

Purpose Iodine-131–metaiodobenzylguanidine (131I-MIBG) has been shown to be active against refractory neuroblastoma. The primary toxicity of 131I-MIBG is myelosuppression, which might necessitate autologous hematopoietic stem-cell transplantation (AHSCT). The goal of this study was to determine risk factors for myelosuppression and the need for AHSCT after 131I-MIBG treatment. Patients and Methods Fifty-three patients with refractory or relapsed neuroblastoma were treated with 18 mCi/kg 131I-MIBG on a phase I/II protocol. The median whole-body radiation dose was 2.92 Gy. Results Almost all patients required at least one platelet (96%) or red cell (91%) transfusion and most patients (79%) developed neutropenia (< 0.5 × 103/μL). Patients reached platelet nadir earlier than neutrophil nadir (P < .0001). Earlier platelet nadir correlated with bone marrow tumor, more extensive bone involvement, higher whole-body radiation dose, and longer time from diagnosis to 131I-MIBG therapy (P ≤ .04). In patients who did not require AHSCT, bone marrow disease predicted longer periods of neutropenia and platelet transfusion dependence (P ≤ .03). Nineteen patients (36%) received AHSCT for prolonged myelosuppression. Of patients who received AHSCT, 100% recovered neutrophils, 73% recovered red cells, and 60% recovered platelets. Failure to recover red cells or platelets correlated with higher whole-body radiation dose (P ≤ .04). Conclusion These results demonstrate the substantial hematotoxicity associated with high-dose 131I-MIBG therapy, with severe thrombocytopenia an early and nearly universal finding. Bone marrow tumor at time of treatment was the most useful predictor of hematotoxicity, whereas whole-body radiation dose was the most useful predictor of failure to recover platelets after AHSCT.


BMJ Open ◽  
2017 ◽  
Vol 7 (8) ◽  
pp. e017548 ◽  
Author(s):  
Rebecca Ward ◽  
William D Carroll ◽  
Paula Cunningham ◽  
Sheng-Ang Ho ◽  
Mary Jones ◽  
...  

ObjectivesCumulative radiation exposure is associated with increased risk of malignancy. This is important in cystic fibrosis (CF) as frequent imaging is required to monitor disease progression and diagnose complications. Previous estimates of cumulative radiation are outdated as the imaging was performed on older equipment likely to deliver higher radiation. Our objectives were to determine the radiation dose delivered to children during common radiological investigations using modern equipment and to identify the number of such investigations performed in a cohort of children with CF to calculate their cumulative radiation exposure.Design, setting and participantsData including age at investigation and radiation exposure measured as estimated effective dose (EED) were collected on 2827 radiological studies performed on children at one UK paediatric centre. These were combined with the details of all radiological investigations performed on 65 children with CF attending the same centre to enable calculation of each child’s cumulative radiation exposure.ResultsThe mean EED for the common radiological investigations varied according to age. The range was 0.01–0.02 mSv for chest X-rays, 0.03–0.11 mSv for abdominal X-rays, 0.57–1.69 mSv for CT chest, 2.9–3.9 mSv for abdominal and pelvic CT, 0.20–0.21 mSv for sinus CT and 0.15–0.52 mSv for fluoroscopy-guided procedures. The mean EED was three to five times higher for helical compared with axial chest CT scans. The mean annual cumulative EED for our cohort of children with CF was 0.15 mSv/year with an estimated cumulative paediatric lifetime EED (0–18 years) of 3.5 mSv.ConclusionsThis study provides up-to-date estimations of the radiation exposure when using common radiological investigations. These doses and the estimates of cumulative radiation exposure in children with CF are lower than previously reported. This reflects the reduced EED associated with modern equipment and the use of age-specific scanning protocols.


Sign in / Sign up

Export Citation Format

Share Document