A comparative analysis on different enzyme immobilization nanomaterials: Progress, constraints, and recent trends

2020 ◽  
Vol 28 ◽  
Author(s):  
Fatemeh Borzouee ◽  
Jaleh Varshosaz ◽  
Reza Ahangari Cohan ◽  
Dariush Norouzian ◽  
Razieh Taghizadeh Pirposhteh

Abstract:: Immobilization techniques have been popularly used to preserve the operational stability of the enzymes for industrial applications. The three main components of an immobilized enzyme system are the enzyme, the matrix/support, and the technique of immobilization. So far different supports have been developed to improve the efficiency of the immobilized enzymes. But in the recent decade, nanotechnology has been considerable research interest in the field of immobilized enzyme carriers. The materials at the nano-scale due to their unique physicochemical properties including; specific surface area, mass transfer limitation, and effective enzyme loading, are considered as interesting matrices for enzyme immobilization. This review describes techniques employed to immobilize enzymes and provides an integrated focus on the most common nanoparticles for enzyme conjugation. Additionally, the pros and cons of nanoparticles as immobilization matrices are also discussed. Depending on the type of enzyme and its application, in this review, the researchers are directed to select an appropriate method and support for enzyme immobilization in terms of enzyme stability and functionality.

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 968
Author(s):  
Sabrina Ait Braham ◽  
El-Hocine Siar ◽  
Sara Arana-Peña ◽  
Diego Carballares ◽  
Roberto Morellon-Sterling ◽  
...  

This paper aims to investigate the effects of some salts (NaCl, (NH4)2SO4 and Na2SO4) at pH 5.0, 7.0 and 9.0 on the stability of 13 different immobilized enzymes: five lipases, three proteases, two glycosidases, and one laccase, penicillin G acylase and catalase. The enzymes were immobilized to prevent their aggregation. Lipases were immobilized via interfacial activation on octyl agarose or on glutaraldehyde-amino agarose beads, proteases on glyoxyl agarose or glutaraldehyde-amino agarose beads. The use of high concentrations of salts usually has some effects on enzyme stability, but the intensity and nature of these effects depends on the inactivation pH, nature and concentration of the salt, enzyme and immobilization protocol. The same salt can be a stabilizing or a destabilizing agent for a specific enzyme depending on its concentration, inactivation pH and immobilization protocol. Using lipases, (NH4)2SO4 generally permits the highest stabilities (although this is not a universal rule), but using the other enzymes this salt is in many instances a destabilizing agent. At pH 9.0, it is more likely to find a salt destabilizing effect than at pH 7.0. Results confirm the difficulty of foreseeing the effect of high concentrations of salts in a specific immobilized enzyme.


Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 83 ◽  
Author(s):  
Gregory A. Ellis ◽  
Scott N. Dean ◽  
Scott A. Walper ◽  
Igor L. Medintz

Nanoparticle scaffolds can impart multiple benefits onto immobilized enzymes including enhanced stability, activity, and recoverability. The magnitude of these benefits is modulated by features inherent to the scaffold–enzyme conjugate, amongst which the size of the nanoscaffold itself can be critically important. In this review, we highlight the benefits of enzyme immobilization on nanoparticles and the factors affecting these benefits using quantum dots and gold nanoparticles as representative materials due to their maturity. We then review recent literature on the use of these scaffolds for enzyme immobilization and as a means to dissect the underlying mechanisms. Detailed analysis of the literature suggests that there is a “sweet-spot” for scaffold size and the ratio of immobilized enzyme to scaffold, with smaller scaffolds and lower enzyme:scaffold ratios generally providing higher enzymatic activities. We anticipate that ongoing studies of enzyme immobilization onto nanoscale scaffolds will continue to sharpen our understanding of what gives rise to beneficial characteristics and allow for the next important step, namely, that of translation to large-scale processes that exploit these properties.


Catalysts ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 647 ◽  
Author(s):  
Zongpei Zhao ◽  
Meng-Cheng Zhou ◽  
Run-Lin Liu

Immobilization techniques are generally based on reusing enzymes in industrial applications to reduce costs and improve enzyme properties. These techniques have been developing for decades, and many methods for immobilizing enzymes have been designed. To find a better immobilization method, it is necessary to review the recently developed methods and have a clear overview of the advantages and limitations of each method. This review introduces the recently reported immobilization methods and discusses the improvements in enzyme properties by different methods. Among the techniques to improve enzyme properties, metal–organic frameworks, which have diverse structures, abundant organic ligands and metal nodes, offer a promising platform.


The development of immobilized enzyme and cell technology is summarized. Industrial processes for sucrose inversion, penicillin deacylation and glucose isomerization using immobilized enzymes are described. An alternative process for glucose isomerization using immobilized cells, and some other industrial applications of immobilized cells are indicated. Recent developments in immobilized enzyme and cell technology are assessed and the relative merits of the different biochemical catalyst forms are considered.


2019 ◽  
Vol 5 (2) ◽  
pp. 36 ◽  
Author(s):  
Kamyar Khoshnevisan ◽  
Elahe Poorakbar ◽  
Hadi Baharifar ◽  
Mohammad Barkhi

Cellulosic enzymes, including cellulase, play an important role in biotechnological processes in the fields of food, cosmetics, detergents, pulp, paper, and related industries. Low thermal and storage stability of cellulase, presence of impurities, enzyme leakage, and reusability pose great challenges in all these processes. These challenges can be overcome via enzyme immobilization methods. In recent years, cellulase immobilization onto nanomaterials became the focus of research attention owing to the surface features of these materials. However, the application of these nanomaterials is limited due to the efficacy of their recovery process. The application of magnetic nanoparticles (MNPs) was suggested as a solution to this problem since they can be easily removed from the reaction mixture by applying an external magnet. Recently, MNPs were extensively employed for enzyme immobilization owing to their low toxicity and various practical advantages. In the present review, recent advances in cellulase immobilization onto functionalized MNPs is summarized. Finally, we discuss enhanced enzyme reusability, activity, and stability, as well as improved enzyme recovery. Enzyme immobilization techniques offer promising potential for industrial applications.


2019 ◽  
Vol 8 (1) ◽  
pp. 45-55
Author(s):  
Shatabdy Saha ◽  
Md Zahidul Islam ◽  
Umme Salma Zohora ◽  
Mohammed Salahuddin ◽  
Sabbir Janee ◽  
...  

Enzyme immobilization provides an excellent opportunity to use the enzymes for several times with greater productivity. The main aim of the present study is the establishment of a functional and sustainable bio-system engineering process based on immobilized α-amylase enzyme for the saccharification of starch with industrial focus as well as cost effective sustainable bioprocess system by using indigenous industrial waste materials as carrier agents. In this study, α-amylase was immobilized in different types of support matrices like alginate, sawdust, sugarcane bagasse and the activity of immobilized enzymes were analyzed for the breakdown of starch. The experimental results showed that the productivity of immobilized enzyme was around 2.3 times higher than the free enzyme. Conjugates of bagasse-alginate showed the highest result. A fixed batch immobilized enzyme bioreactor had been developed which could be used for the production of various valuable products in the industrial scale. Jahangirnagar University J. Biol. Sci. 8(1): 45-55, 2019 (June)


Reproduction ◽  
2000 ◽  
pp. 143-150 ◽  
Author(s):  
JM Bedford ◽  
OB Mock ◽  
SK Nagdas ◽  
VP Winfrey ◽  
GE Olson

To obtain further perspective on reproduction and particularly gamete function among so-called primitive mammals presently grouped in the Order Insectivora, we have examined the African hedgehog, Atelerix albiventris, in light of unusual features reported in shrews and moles. Atelerix proves to share many but not all of the characteristics seen in these other insectivores. The penis of Atelerix has a 'snail-like' form, but lacks the surface spines common in insectivores and a number of other mammals. Hedgehog spermatozoa display an eccentric insertion of the tail on the sperm head, and they manifest the barbs on the perforatorium that, in shrews, probably effect the initial binding of the sperm head to the zona pellucida. As a possible correlate, the structural matrix of the hedgehog acrosome comprises only two main components, as judged by immunoblotting, rather than the complex of peptides seen in the matrix of some higher mammals. The Fallopian tube of Atelerix is relatively simple; it displays only minor differences in width and in the arborized epithelium between the isthmus and ampulla, and shows no evidence of the unusual sperm crypts that characterize the isthmus or ampulla, depending on the species, in shrews and moles. In common with other insectivores, Atelerix appears to be an induced ovulator, as judged by the ovulation of some 6-8 eggs by about 23 h after injection of hCG. The dense cumulus oophorus appeared to have little matrix, in keeping with the modest dimensions of the tubal ampulla and, while it was not quite as discrete as that of soricids, it did show the same insensitivity to 0.5% (w/v) ovine or bovine hyaluronidase.


2019 ◽  
Vol 25 (24) ◽  
pp. 2661-2676 ◽  
Author(s):  
Sundaresan Bhavaniramya ◽  
Ramar Vanajothi ◽  
Selvaraju Vishnupriya ◽  
Kumpati Premkumar ◽  
Mohammad S. Al-Aboody ◽  
...  

Enzymes exhibit a great catalytic activity for several physiological processes. Utilization of immobilized enzymes has a great potential in several food industries due to their excellent functional properties, simple processing and cost effectiveness during the past decades. Though they have several applications, they still exhibit some challenges. To overcome the challenges, nanoparticles with their unique physicochemical properties act as very attractive carriers for enzyme immobilization. The enzyme immobilization method is not only widely used in the food industry but is also a component methodology in the pharmaceutical industry. Compared to the free enzymes, immobilized forms are more robust and resistant to environmental changes. In this method, the mobility of enzymes is artificially restricted to changing their structure and properties. Due to their sensitive nature, the classical immobilization methods are still limited as a result of the reduction of enzyme activity. In order to improve the enzyme activity and their properties, nanomaterials are used as a carrier for enzyme immobilization. Recently, much attention has been directed towards the research on the potentiality of the immobilized enzymes in the food industry. Hence, the present review emphasizes the different types of immobilization methods that is presently used in the food industry and other applications. Various types of nanomaterials such as nanofibers, nanoflowers and magnetic nanoparticles are significantly used as a support material in the immobilization methods. However, several numbers of immobilized enzymes are used in the food industries to improve the processing methods which not only reduce the production cost but also the effluents from the industry.


Author(s):  
Agnieszka Kołodziejczak-Radzimska ◽  
Long D. Nghiem ◽  
Teofil Jesionowski

Abstract Purpose of Review Untreated wastewater discharge can significantly and negatively impact the state of the environment. Rapid industrialization and economic development have directly contributed to land and water pollution resulting from the application of many chemicals such as organic dyes, pharmaceuticals, and industrial reagents. The removal of these chemicals before effluent discharge is crucial for environmental protection. This review aims to explore the importance of functionalized materials in the preparation of biocatalytic systems and consider their application in eliminating water pollutants. Recent Findings Wastewater treatment methods can be classified into three groups: (i) chemical (e.g., chemical oxidation and ozonation), (ii) physical (e.g., membrane separation and ion exchange), and (iii) biological processes. Biological treatment is the most widely used method due to its cost-effectiveness and eco-friendliness. In particular, the use of immobilized enzymes has recently become more attractive as a result of scientific progress in advanced material synthesis. The selection of an appropriate support plays an important role in the preparation of such biologically active systems. Recent studies have demonstrated the use of various materials for enzyme immobilization in the purification of water. Summary This review identifies and discusses different biocatalytic systems used in the enzymatic degradation of various water pollutants. Materials functionalized by specific groups can serve as good support matrices for enzyme immobilization, providing chemical and thermal stability to support catalytic reactions. Enzymatic biocatalysis converts the pollutants into simpler products, which are usually less toxic than their parents. Due to immobilization, the enzyme can be used over multiple cycles to reduce the cost of wastewater treatment. Future studies in this field should focus on developing new platforms for enzyme immobilization in order to improve degradation efficiency.


2021 ◽  
Vol 9 (3) ◽  
pp. 533
Author(s):  
Alex Graça Contato ◽  
Tássio Brito de Oliveira ◽  
Guilherme Mauro Aranha ◽  
Emanuelle Neiverth de Freitas ◽  
Ana Claudia Vici ◽  
...  

The lignocellulosic biomass comprises three main components: cellulose, hemicellulose, and lignin. Degradation and conversion of these three components are attractive to biotechnology. This study aimed to prospect fungal lignocellulolytic enzymes with potential industrial applications, produced through a temporal analysis using Hymenaea courbaril and Tamarindus indica seeds as carbon sources. α-L-arabinofuranosidase, acetyl xylan esterase, endo-1,5-α-L-arabinanase, β-D-galactosidase, β-D-glucosidase, β-glucanase, β-D-xylosidase, cellobiohydrolase, endoglucanase, lichenase, mannanase, polygalacturonase, endo-1,4-β-xylanase, and xyloglucanase activities were determined. The enzymes were produced for eight filamentous fungi: Aspergillus fumigatus, Trametes hirsuta, Lasiodiplodia sp., two strains of Trichoderma longibrachiatum, Neocosmospora perseae, Fusarium sp. and Thermothelomyces thermophilus. The best producers concerning enzymatic activity were T. thermophilus and T. longibrachiatum. The optimal conditions for enzyme production were the media supplemented with tamarind seeds, under agitation, for 72 h. This analysis was essential to demonstrate that cultivation conditions, static and under agitation, exert strong influences on the production of several enzymes produced by different fungi. The kind of sugarcane, pretreatment used, microorganisms, and carbon sources proved limiting sugar profile factors.


Sign in / Sign up

Export Citation Format

Share Document