Advanced Carbon-based Nanoplatforms Combining Drug Delivery and Thermal Therapy for Cancer Treatment

2019 ◽  
Vol 24 (34) ◽  
pp. 4060-4076 ◽  
Author(s):  
Yanhong Xu ◽  
Yuling Shan ◽  
Hailin Cong ◽  
Youqing Shen ◽  
Bing Yu

Anticancer treatment has become a research highlight in recent years. Despite several techniques have been developed and applied in the clinic, this area still meets great challenges in the construction of smart anticancer devices with accurate targeting, controlled release and microenvironment response properties. Most of the carbon-based materials are biocompatible, possessing abundant and tunable pore structures and particularly large surface areas. These properties make them suitable materials as drug carriers. In addition, some carbon-based materials are capable of absorbing near-infrared radiation (NIR) and have highly efficient photothermal effects. The generated heat in situ can be used to kill cancer cells in short time on the position. This review describes the recent and significant application of four kinds of carbon materials including carbon nanotubes, graphene, carbon dots and mesoporous carbon for drug delivery and photothermal therapy. After a short introduction of the structures and properties of these materials, the construction and application of these nanoplatforms in drug delivery, photothermal therapy or their combination will be summarized and discussed in depth. In addition, other carbon allotropes as drug carriers will be introduced briefly. Finally, the risk assessments and the perspectives and challenges of these materials used in cancer therapies are enclosed.

Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Manoj Kumar Mahata ◽  
Ranjit De ◽  
Kang Taek Lee

Due to the unique properties of lanthanide-doped upconverting nanoparticles (UCNP) under near-infrared (NIR) light, the last decade has shown a sharp progress in their biomedicine applications. Advances in the techniques for polymer, dye, and bio-molecule conjugation on the surface of the nanoparticles has further expanded their dynamic opportunities for optogenetics, oncotherapy and bioimaging. In this account, considering the primary benefits such as the absence of photobleaching, photoblinking, and autofluorescence of UCNPs not only facilitate the construction of accurate, sensitive and multifunctional nanoprobes, but also improve therapeutic and diagnostic results. We introduce, with the basic knowledge of upconversion, unique properties of UCNPs and the mechanisms involved in photon upconversion and discuss how UCNPs can be implemented in biological practices. In this focused review, we categorize the applications of UCNP-based various strategies into the following domains: neuromodulation, immunotherapy, drug delivery, photodynamic and photothermal therapy, bioimaging and biosensing. Herein, we also discuss the current emerging bioapplications with cutting edge nano-/biointerfacing of UCNPs. Finally, this review provides concluding remarks on future opportunities and challenges on clinical translation of UCNPs-based nanotechnology research.


2016 ◽  
Vol 4 (48) ◽  
pp. 7845-7851 ◽  
Author(s):  
Junpeng Shi ◽  
Meng Sun ◽  
Xia Sun ◽  
Hongwu Zhang

Near-infrared persistent luminescence hollow mesoporous nanospheres have been synthesized via a template method. These nanospheres can be used as large capacity drug carriers and realize super long-term and high sensitivity tracking of drug delivery in deep tissue.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoxia Song ◽  
Zhi Chen ◽  
Xue Zhang ◽  
Junfeng Xiong ◽  
Teng Jiang ◽  
...  

AbstractMagnetic micro/nanorobots attracted much attention in biomedical fields because of their precise movement, manipulation, and targeting abilities. However, there is a lack of research on intelligent micro/nanorobots with stimuli-responsive drug delivery mechanisms for cancer therapy. To address this issue, we developed a type of strong covalently bound tri-bead drug delivery microrobots with NIR photothermal response azobenzene molecules attached to their carboxylic surface groups. The tri-bead microrobots are magnetic and showed good cytocompatibility even when their concentration is up to 200 µg/mL. In vitro photothermal experiments demonstrated fast NIR-responsive photothermal property; the microrobots were heated to 50 °C in 4 min, which triggered a significant increase in drug release. Motion control of the microrobots inside a microchannel demonstrated the feasibility of targeted therapy on tumor cells. Finally, experiments with lung cancer cells demonstrated the effectiveness of targeted chemo-photothermal therapy and were validated by cell viability assays. These results indicated that tri-bead microrobots have excellent potential for targeted chemo-photothermal therapy for lung cancer cell treatment.


2019 ◽  
Vol 7 (24) ◽  
pp. 3811-3825 ◽  
Author(s):  
Panchanathan Manivasagan ◽  
Seung Won Jun ◽  
Van Tu Nguyen ◽  
Nguyen Thanh Phong Truong ◽  
Giang Hoang ◽  
...  

FA–COS–TGA–GNRs–DOX have been successfully designed as a drug delivery system for chemo-photothermal combination therapy.


RSC Advances ◽  
2015 ◽  
Vol 5 (113) ◽  
pp. 93226-93233 ◽  
Author(s):  
Lei Zhang ◽  
Yecheng Li ◽  
Zexun Jin ◽  
King Ming Chan ◽  
Jimmy C. Yu

Illustration of both pH- and NIR-controlled drug deliveries using DOX loaded MCN–CuS nanocomposites and their application in cancer chemo-photothermal therapy.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 48
Author(s):  
Oisin Kearns ◽  
Adalberto Camisasca ◽  
Silvia Giordani

Hyaluronic acid (HA) has been implemented for chemo and photothermal therapy to target tumour cells overexpressing the CD44+ receptor. HA-targeting hybrid systems allows carbon nanomaterial (CNM) carriers to efficiently deliver anticancer drugs, such as doxorubicin and gemcitabine, to the tumour sites. Carbon nanotubes (CNTs), graphene, graphene oxide (GO), and graphene quantum dots (GQDs) are grouped for a detailed review of the novel nanocomposites for cancer therapy. Some CNMs proved to be more successful than others in terms of stability and effectiveness at removing relative tumour volume. While the literature has been focused primarily on the CNTs and GO, other CNMs such as carbon nano-onions (CNOs) proved quite promising for targeted drug delivery using HA. Near-infrared laser photoablation is also reviewed as a primary method of cancer therapy—it can be used alone or in conjunction with chemotherapy to achieve promising chemo-photothermal therapy protocols. This review aims to give a background into HA and why it is a successful cancer-targeting component of current CNM-based drug delivery systems.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2070
Author(s):  
Pan Liang ◽  
Linshen Mao ◽  
Yanli Dong ◽  
Zhenwen Zhao ◽  
Qin Sun ◽  
...  

Liposomes are attractive carriers for targeted and controlled drug delivery receiving increasing attention in cancer photothermal therapy. However, the field of creating near-infrared nanomaterial-liposome hybrid nanocarriers (NIRN-Lips) is relatively little understood. The hybrid nanocarriers combine the dual superiority of nanomaterials and liposomes, with more stable particles, enhanced photoluminescence, higher tumor permeability, better tumor-targeted drug delivery, stimulus-responsive drug release, and thus exhibiting better anti-tumor efficacy. Herein, this review covers the liposomes supported various types of near-infrared nanomaterials, including gold-based nanomaterials, carbon-based nanomaterials, and semiconductor quantum dots. Specifically, the NIRN-Lips are described in terms of their feature, synthesis, and drug-release mechanism. The design considerations of NIRN-Lips are highlighted. Further, we briefly introduced the photothermal conversion mechanism of NIRNs and the cell death mechanism induced by photothermal therapy. Subsequently, we provided a brief conclusion of NIRNs-Lips applied in cancer photothermal therapy. Finally, we discussed a synopsis of associated challenges and future perspectives for the applications of NIRN-Lips in cancer photothermal therapy.


Sign in / Sign up

Export Citation Format

Share Document