Recent Progress in the Synthesis of Isoxazoles

2021 ◽  
Vol 25 ◽  
Author(s):  
Dau Xuan Duc ◽  
Vo Cong Dung

: Isoxazole derivatives are aromatic five-membered ring heterocyclic compounds with one oxygen atom and one nitrogen atom at adjacent positions. These compounds have a broad spectrum of applications in medicinal chemistry, such as antimicrobial, anticancer, antitumor, antitubercular, analgesic, anti-inflammatory, antidepressant, and anticonvulsant activities and some of them are well-known drugs for the treatment of various diseases in the market. The use of this class of compounds in agriculture as herbicides, insecticides have been widely reported. In organic materials, these compounds have been applied as semiconductors, single-walled nanotubes, liquid crystals, chiral ligands, scaffolds for peptidomimetics, dyes, and high-temperature lubricants. Isoxazole derivatives also play an important role in organic synthesis because they can be converted into several important synthetic units such as β-hydroxy ketones, γ-amino alcohols, α,β-unsaturated oximes, β-hydroxy nitriles, α-hydroxy-β-diketones, and β-dicarbonyl compounds. Due to such a wide range of applicability, the synthesis of isoxazole derivatives has attracted intensive research from chemists. This review will focus on considerable studies on the synthesis of isoxazoles which date back from 2012.

2020 ◽  
Vol 17 ◽  
Author(s):  
Mohsen A.-M. Gomaa ◽  
Huda A. Ali

Background : The reactivity of 4-(dicyanomethylene)-3-methyl-l-phenyl-2-pyrazoline-5-one DCNP 1 and its derivatives makes it valuable as a building block for the synthesis of heterocyclic compounds like pyrazolo-imidazoles, - thiazoles, spiropyridines, spiropyrroles, spiropyrans and others. As a number of publications have reported on the reactivity of DCNP and its derivatives, we compiled some features of this interesting molecule. Objective: This article aims to review the preparation of DCNP, its reactivity and application in heterocyclic and dyes synthesis. Conclusion: In this review we have provided an overview of recent progress in the chemistry of DCNP and its significance in synthesis of various classes of heterocyclic compounds and dyes. The unique reactivity of DCNP offers unprecedentedly mild reaction conditions for the generation of versatile cynomethylene dyes from a wide range of precursors including amines, α-aminocarboxylic acids, their esters, phenols, malononitriles and azacrown ethers. We anticipate that more innovative transformations involving DCNP will continue to emerge in the near future.


2020 ◽  
Vol 24 (19) ◽  
pp. 2256-2271
Author(s):  
Dau Xuan Duc

: Benzo[b]thiophenes are aromatic heterocyclic compounds containing benzene and thiophene rings. This class of heterocycles is present in a large number of natural and non-natural compounds. Benzo[b]thiophene derivatives have a broad range of applications in medicinal chemistry such as antimicrobial, anticancer, antioxidant, anti-HIV and antiinflammatory activities. The use of benzo[b]thiophene derivatives in other fields has also been reported. Various benzo[b]thiophenes compounds have been employed as organic photoelectric materials, while several benzo[b]thiophenes have been used as organic semiconductors. Benzo[b]thiophenes have also been used as building blocks or intermediates for the synthesis of pharmaceutically important molecules. : Due to such a wide range of applicability, the synthesis of benzo[b]thiophene derivatives has attracted intensive research. Numerous mild and efficient approaches for the synthesis of benzo[b]thiophenes have been developed over the years. Different catalysts and substrates have been applied for benzo[b]thiophene synthesis. This review will focus on the studies in the construction of benzo[b]thiophene skeleton, which date back from 2012.


2020 ◽  
Vol 17 ◽  
Author(s):  
Mustapha Dib ◽  
Hajiba Ouchetto ◽  
Khadija Ouchetto ◽  
Abderrafia Hafid ◽  
Mostafa Khouili

: Heterocyclic compounds containing the quinoline ring play a significant role in organic synthesis and therapeutic chemistry. Polyfunctionalized quinolines have attracted the attention of many research groups, especially those who work on the drug discovery and development. These derivatives have been widely explored by the research biochemists and are reported to possess wide biological activities. This review focuses on the recent progress in the synthesis of heterocyclic compounds based-quinoline and their potential biological activities.


2019 ◽  
Vol 16 (5) ◽  
pp. 671-708 ◽  
Author(s):  
Duc Dau Xuan

Background: Quinoline-containing compounds present in both natural and synthetic products are an important class of heterocyclic compounds. Many of the substituted quinolines have been used in various areas including medicine as drugs. Compounds with quinoline skeleton possess a wide range of bioactivities such as antimalarial, anti-bacterial, anthelmintic, anticonvulsant, antiviral, anti-inflammatory, and analgesic activity. Due to such a wide range of applicability, the synthesis of quinoline derivatives has attracted a lot of attention of chemists to develop effective methods. Many known methods have been expanded and improved. Furthermore, various new methods for quinoline synthesis have been established. This review will focus on considerable studies on the synthesis of quinolines date which back to 2014. Objective: In this review, we discussed recent achievements on the synthesis of quinoline compounds. Some classical methods have been modified and improved, while other new methods have been developed. A vast variety of catalysts were used for these transformations. In some studies, quinoline synthesis reaction mechanisms were also displayed. Conclusion: Many methods for the synthesis of substituted quinoline rings have been developed recently. Over the past five years, the majority of those reported have been based on cycloisomerization and cyclization processes. Undoubtedly, more imaginative approaches to quinoline synthesis will appear in the literature in the near future. The application of known methods to natural product synthesis is probably the next challenge in the field.


2020 ◽  
Vol 24 (6) ◽  
pp. 622-657
Author(s):  
Duc Dau Xuan

: Pyrrole derivatives are nitrogen-containing heterocyclic compounds and widely distributed in a large number of natural and non-natural compounds. These compounds possess a broad spectrum of biological activities such as anti-infammatory, antiviral, antitumor, antifungal, and antibacterial activities. Besides their biological activity, pyrrole derivatives have also been applied in various areas such as dyes, conducting polymers, organic semiconductors. : Due to such a wide range of applicability, access to this class of compounds has attracted intensive research interest. Various established synthetic methods such as Paal-Knorr, Huisgen, and Hantzsch have been modified and improved. In addition, numerous novel methods for pyrrole synthesis have been discovered. This review will focus on considerable studies on the synthesis of pyrroles, which date back from 2014.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5900
Author(s):  
Hamid Azizollahi ◽  
José-Antonio García-López

The functionalization of C–H bonds has become a major thread of research in organic synthesis that can be assessed from different angles, for instance depending on the type of catalyst employed or the overall transformation that is carried out. This review compiles recent progress in synthetic methodology that merges the functionalization of C–H bonds along with the cleavage of C–C bonds, either in intra- or intermolecular fashion. The manuscript is organized in two main sections according to the type of substrate in which the cleavage of the C–C bond takes place, basically attending to the scission of strained or unstrained C–C bonds. Furthermore, the related research works have been grouped on the basis of the mechanistic aspects of the different transformations that are carried out, i.e.,: (a) classic transition metal catalysis where organometallic intermediates are involved; (b) processes occurring via radical intermediates generated through the use of radical initiators or photochemically; and (c) reactions that are catalyzed or mediated by suitable Lewis or Brønsted acid or bases, where molecular rearrangements take place. Thus, throughout the review a wide range of synthetic approaches show that the combination of C–H and C–C cleavage in single synthetic operations can serve as a platform to achieve complex molecular skeletons in a straightforward manner, among them interesting carbo- and heterocyclic scaffolds.


Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


Author(s):  
Gerald B. Feldewerth

In recent years an increasing emphasis has been placed on the study of high temperature intermetallic compounds for possible aerospace applications. One group of interest is the B2 aiuminides. This group of intermetaliics has a very high melting temperature, good high temperature, and excellent specific strength. These qualities make it a candidate for applications such as turbine engines. The B2 aiuminides exist over a wide range of compositions and also have a large solubility for third element substitutional additions, which may allow alloying additions to overcome their major drawback, their brittle nature.One B2 aluminide currently being studied is cobalt aluminide. Optical microscopy of CoAl alloys produced at the University of Missouri-Rolla showed a dramatic decrease in the grain size which affects the yield strength and flow stress of long range ordered alloys, and a change in the grain shape with the addition of 0.5 % boron.


Alloy Digest ◽  
1970 ◽  
Vol 19 (11) ◽  

Abstract PLATINUM is a soft, ductile, white metal which can be readily worked either hot or cold. It has a wide range of industrial applications because of its excellent corrosion and oxidation resistance and its high melting point. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Pt-1. Producer or source: Matthey Bishop Inc..


Alloy Digest ◽  
1982 ◽  
Vol 31 (6) ◽  

Abstract Type HN is an iron-chromium-nickel alloy containing sufficient chromium for good high-temperature corrosion resistance and with nickel content in excess of the chromium. This alloy has properties somewhat similar to the more widely used ACI Type HT alloy but with better ductility. Type HN is used for highly stressed components in the 1800-2000 F temperature range. It is used in the aircraft, automotive, petroleum, petrochemical and power industries for a wide range of components and parts. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: SS-410. Producer or source: Various stainless steel casting companies.


Sign in / Sign up

Export Citation Format

Share Document