Expression Level of MiRNA-126 in Serum Exosomes of Allergic Asthma Patients and Lung Tissues of Asthmatic Mice

2019 ◽  
Vol 20 (10) ◽  
pp. 799-803 ◽  
Author(s):  
Meizhen Zhao ◽  
Yu-Pei Li ◽  
Xiao-Rui Geng ◽  
Miao Zhao ◽  
Shi-Bo Ma ◽  
...  

Background: To investigate MiRNA-126 amounts in serum exosomes from allergic asthma patients as well as lung tissues of asthmatic mice, evaluating the expression of its target gene DNMT1 in mouse specimens. Methods: MiRNA-126 amounts in serum exosomes from asthmatic patients were detected by real-time PCR. The mouse model of allergic asthma was established by OVA-sensitization, and allergic symptoms were recorded; serum IL-4 and sIgE level evaluation (ELISA), broncho alveolar lavage fluid (BALF) cell count and H&E staining were performed to assess airway inflammation. MiRNA-126 and DNMT1 levels in the lung of asthmatic and control mice were detected by real-time PCR; DNMT1 protein levels were detected by immunoblot. Results: MiRNA-126 amounts in peripheral blood exosomes from patients with allergic asthma were significantly higher than that of healthy volunteers (P<0.05). The frequencies of scratching of both sides of the nose and sneezing were elevated within 10 min of excitation in asthmatic rats compared with controls. Meanwhile, OVA-sIgE and IL-4 levels were significantly higher in asthmatic animals than controls (P<0.05). In the asthma group, narrowed bronchial lumen and thickened wall were observed, and bronchial and peripheral vessels showed overt inflammatory cell infiltration. Eosinophil, neutrophil and mast cell amounts in the BALF of asthmatic mice were significantly higher than control values. Furthermore, lung miRNA-126 expression in asthmatic mice was significantly higher than that of controls. Finally, DNMT1 mRNA and protein levels were significantly lower in asthmatic animals compared with controls (P < 0.01). Conclusion: MiRNA-126 is highly expressed in serum exosomes from allergic asthma patients and lung tissues of asthmatic mice, suggesting that it may be involved in the pathogenesis of bronchial asthma.

2021 ◽  
pp. 1-16
Author(s):  
Esteban Leyton ◽  
Diego Matus ◽  
Sandra Espinoza ◽  
José Matías Benitez ◽  
Bastián I. Cortes ◽  
...  

Background: Disturbances in the autophagy/endolysosomal systems are proposed as early signatures of Alzheimer’s disease (AD). However, few studies are available concerning autophagy gene expression in AD patients. Objective: To explore the differential expression of classical genes involved in the autophagy pathway, among them a less characterized one, DEF8 (Differentially expressed in FDCP 8), initially considered a Rubicon family member, in peripheral blood mononuclear cells (PBMCs) from individuals with mild cognitive impairment (MCI) and probable AD (pAD) and correlate the results with the expression of DEF8 in the brain of 5xFAD mice. Method: By real-time PCR and flow cytometry, we evaluated autophagy genes levels in PBMCs from MCI and pAD patients. We evaluated DEF8 levels and its localization in brain samples of the 5xFAD mice by real-time PCR, western blot, and immunofluorescence. Results: Transcriptional levels of DEF8 were significantly reduced in PBMCs of MCI and pAD patients compared with healthy donors, correlating with the MoCA and MoCA-MIS cognitive tests scores. DEF8 protein levels were increased in lymphocytes from MCI but not pAD, compared to controls. In the case of brain samples from 5xFAD mice, we observed a reduced mRNA expression and augmented protein levels in 5xFAD compared to age-matched wild-type mice. DEF8 presented a neuronal localization. Conclusion: DEF8, a protein proposed to act at the final step of the autophagy/endolysosomal pathway, is differentially expressed in PBMCs of MCI and pAD and neurons of 5xFAD mice. These results suggest a potential role for DEF8 in the pathophysiology of AD.


2006 ◽  
Vol 55 (9) ◽  
pp. 1229-1235 ◽  
Author(s):  
Catharina F. M. Linssen ◽  
Jan A. Jacobs ◽  
Pieter Beckers ◽  
Kate E. Templeton ◽  
Judith Bakkers ◽  
...  

Pneumocystis jiroveci pneumonia (PCP) is an opportunistic infection affecting immunocompromised patients. While conventional diagnosis of PCP by microscopy is cumbersome, the use of PCR to diagnose PCP has great potential. Nevertheless, inter-laboratory validation and standardization of PCR assays is lacking. The aim of this study was to evaluate the inter-laboratory agreement of three independently developed real-time PCR assays for the detection of P. jiroveci in bronchoalveolar lavage fluid samples. Therefore, 124 samples were collected in three tertiary care laboratories (Leiden University Medical Center, Maastricht Infection Center and Radboud University Nijmegen Medical Centre) and were tested by both microscopy and real-time PCR. Of 41 samples positive for P. jiroveci by microscopy, 40 were positive in all three PCR assays. The remaining sample was positive in a single assay only. Out of 83 microscopy-negative samples, 69 were negative in all three PCR assays. The other 14 samples were found positive, either in all three assays (n=5), in two (n=2) or in one of the assays (n=7). The data demonstrate high inter-laboratory agreement among real-time PCR assays for the detection of P. jiroveci.


2016 ◽  
Vol 34 (2_suppl) ◽  
pp. 199-199 ◽  
Author(s):  
Daisuke Kajiwara ◽  
Kazuhisa Minamiguchi ◽  
Masanao Seki ◽  
Hiroya Mizutani ◽  
Hiroki Aoyagi ◽  
...  

199 Background: Two new therapies, enzalutamide and abiraterone, directed at the androgen receptor (AR) signaling axis, represent important advances in the management of castration-resistant prostate cancer (CRPC). However, eventually almost all of patients acquire resistance to these drugs by a variety of mechanisms. Ligand independent AR activation such as induction of AR splice variants and AR overexpression are major issues of current CRPC progression. In the present study, we report the biological characterization of TAS3681, which is a new AR antagonist with AR downregulation activity, and propose this concept as a potential new approach for the treatment of CRPC. Methods: For assay of AR transactivation, prostate cancer (PCa) cells were transiently transfected with androgen-responsive reporter gene construct. The transfected cells were treated with growth factor and cytokine in steroid-depleted media, and luciferase activity was measured. To evaluate the effect of TAS3681 on AR and c-Myc protein expression, PCa cells were treated with TAS3681 in steroid-depleted media. AR and c-Myc protein levels were determined by western blot. Real-time PCR was used to analyze the mRNA levels of c-Myc and c-Myc target gene. Chromatin immunoprecipitation was performed to determine the enrichment of AR at the element. Results: TAS3681 dose-dependently reduced AR protein levels in PCa cells. In contrast to enzalutamide, TAS3681 suppressed androgen-independent AR transactivation by growth factor and cytokine. In PCa cells which express full-length AR and splice variant AR-v7, TAS3681 suppressed AR-v7 target gene expression through downregulation of AR-v7. Moreover, TAS3681 reduced expression of c-Myc, critical driver of androgen-independent mechanisms of PCa progression, via AR downregulation activity. In addition, real-time PCR assay showed the transcriptional suppression of c-Myc and its target gene by TAS3681. Conclusions: TAS3681 exhibits suppressive effects on ligand-independent AR activation via AR decreasing activity. These finding suggest that TAS3681 could be a candidate of breakthrough therapy for resistance to current AR pathway target drugs.


2008 ◽  
Vol 18 (5) ◽  
pp. 1090-1096 ◽  
Author(s):  
R. A. Tassi ◽  
E. Bignotti ◽  
M. Falchetti ◽  
S. Calza ◽  
A. Ravaggi ◽  
...  

Mammaglobin B (MGB-2) is an uteroglobin gene family member recently found highly differentially expressed in ovarian cancer by gene expression profiling. To evaluate its potential as a novel endometrial cancer biomarker, in this study we quantified and compared MGB-2 expression at messenger RNA and protein levels in endometrial tumors (endometrioid endometrial cancer [EEC]) with different grades of differentiation. MGB-2 expression was evaluated by real-time polymerase chain reaction (PCR) and immunohistochemistry (IHC) in fresh frozen biopsies and paraffin-embedded tissues derived from a total of 70 patients including 50 primary EEC and 20 normal endometria (NECs). High levels of MGB-2 gene expression were detected in 10 of 11 EEC G1 cases (91%), 16 of 17 EEC G2 cases (94%), and 6 of 22 EEC G3 cases (27%) by real-time PCR. In contrast, normal endometrial cells expressed low to negligible levels of MGB-2 by real-time PCR (P= 0.002 EEC vs NEC). Well- and moderately differentiated EECs overexpressed MGB-2 gene at significant higher levels when compared to NECs (P< 0.01). Pairwise differences between both G2 and G1 vs G3 cases for MGB-2 relative gene expression values were also statistically significant (G2 vs G3 P< 0.001, G1 vs G3 P= 0.016). MGB-2 protein expression was detected in 31 (86%) of 36 EEC and 0 of 5 atrophic NEC controls, while seven of eight (88%) of the proliferative/secretory/hyperplastic NECs focally expressed MGB-2 by IHC. MGB-2 is highly expressed in EEC, particularly in well- and moderately differentiated tumors, and may represent a novel molecular marker for EEC.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Wenjun Ji ◽  
Xinlin Chen ◽  
Juan Lv ◽  
Meng Wang ◽  
Shuting Ren ◽  
...  

Background. Liraglutide (a glucagon-like peptide 1 analog) was used for the treatment of type 2 diabetes (T2DM) which could produce glucose-dependent insulin secretion.Aim. The aim was to investigate whether liraglutide could improve myofibril and mitochondria injury in skeletal muscle and the mechanisms in diabetic KKAy mice.Method. We divided the male KKAy mice into 2 groups: liraglutide group (250 μg/kg/day liraglutide subcutaneous injection) and model group; meanwhile, the male C57BL/6J mice were considered as the control. After 6 weeks, the ultrastructure of skeletal muscle was observed by electron microscope. The gene expressions of protein tyrosine phosphatase 1B (PTP1B), phosphatidylinositol 3-kinase (PI3K), and glucose transporter type 4 (GLUT4) were determined by real-time PCR. The protein levels of the above molecules and phospho-Akt2 (p-Akt2) were measured by Western blot.Results. Liraglutide significantly ameliorated the injury of mitochondria by increasing the number (+441%) and the area (+113%) of mitochondria and mitochondrial area/100 µm2(+396%) in skeletal muscle of KKAy mice. The results of real-time PCR and Western blot showed that liraglutide downregulated PTP1B while it upregulated PI3K and GLUT4 (P<0.01). The protein level of p-Akt2/Akt2 was also increased (P<0.01).Conclusion. These results revealed that liraglutide could improve myofibril and mitochondria injury in skeletal muscle against T2DM via PTP1B and PI3K/Akt2 signaling pathway.


Author(s):  
Linlin Feng ◽  
Tingting Meng ◽  
Yunyun Qi ◽  
Seyyed Shamsadin Athari ◽  
Xiaoyun Chen

  Allergic asthma is a complicated respiratory problem characterized by airway inflammation, airway hyperresponsiveness (AHR), breathlessness, mucus hyper-secretion, and goblet cell hyperplasia. Asthma is controlled by genetic and environmental factors. Allergy is the main trigger of asthma and is mediated by Th2 cytokines along with IgE production. Vitamin D (Vit D) is the main supplementary factor for the immune system. In the present study, we investigated the effect of Vit D on the exacerbation of allergic asthma. A murine model of allergic asthma was induced by ovalbumin (OVA) in four of five groups of studied female BALB/c mice (each group, n=20). One group was considered as control. Of OVA-induced mice, two groups received Vit D via oral (10,000 IU/kg diet) or intranasal (inhalation) forms (30 min on days 25, 27, and 29), and the third group received budesonide. At least, AHR, the levels of IL-4, IL-5, IL-13, and INF-g in bronchoalveolar lavage fluid (BALF), serum IgE and histamine, IL-25 and IL-33 gene expression, as well as histopathology study of the lung were done. The Penh values, type2 Cytokines in BALF (in both protein and molecular levels), total IgE and histamine, perivascular and peribronchial inflammation, goblet cell hyperplasia, and mucus hypersecretion decreased significantly in both oral and intranasal Vit D-treated asthmatic mice groups, especially on day 38 of orally treated mice. Here, we found Vit D as a promising agent in control of allergic asthma with a remarkable ability to decrease the severity of inflammation. Therefore, Vit D sufficiency is highly recommended in asthmatic patients.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Man Wang ◽  
Feng Zhou ◽  
Hong Mei Wang ◽  
De Xing Xue ◽  
Yao-Guang Liu ◽  
...  

Abstract Background Plant mitochondrial transcription termination factor (mTERF) family members play important roles in development and stress tolerance through regulation of organellar gene expression. However, their molecular functions have yet to be clearly defined. Results Here an mTERF gene V14 was identified by fine mapping using a conditional albino mutant v14 that displayed albinism only in the first two true leaves, which was confirmed by transgenic complementation tests. Subcellular localization and real-time PCR analyses indicated that V14 encodes a chloroplastic protein ubiquitously expressed in leaves while spiking in the second true leaf. Chloroplastic gene expression profiling in the pale leaves of v14 through real-time PCR and Northern blotting analyses showed abnormal accumulation of the unprocessed transcripts covering the rpoB-rpoC1 and/or rpoC1-rpoC2 intercistronic regions accompanied by reduced abundance of the mature rpoC1 and rpoC2 transcripts, which encode two core subunits of the plastid-encoded plastid RNA polymerase (PEP). Subsequent immunoblotting analyses confirmed the reduced accumulation of RpoC1 and RpoC2. A light-inducible photosynthetic gene psbD was also found down-regulated at both the mRNA and protein levels. Interestingly, such stage-specific aberrant posttranscriptional regulation and psbD expression can be reversed by high temperatures (30 ~ 35 °C), although V14 expression lacks thermo-sensitivity. Meanwhile, three V14 homologous genes were found heat-inducible with similar temporal expression patterns, implicating their possible functional redundancy to V14. Conclusions These data revealed a critical role of V14 in chloroplast development, which impacts, in a stage-specific and thermo-sensitive way, the appropriate processing of rpoB-rpoC1-rpoC2 precursors and the expression of certain photosynthetic proteins. Our findings thus expand the knowledge of the molecular functions of rice mTERFs and suggest the contributions of plant mTERFs to photosynthesis establishment and temperature acclimation.


Sign in / Sign up

Export Citation Format

Share Document