Miconazole Nitrate-loaded Microparticles For Buccal Use: Immediate Drug Release and Antifungal Effect

2017 ◽  
Vol 14 (8) ◽  
Author(s):  
Andres Felipe Cartagena ◽  
Amanda Martinez Lyra ◽  
Aline Cristina Kapuchczinski ◽  
Amanda Migliorini Urban ◽  
Luis Antonio Esmerino ◽  
...  
2020 ◽  
Vol 88 (1) ◽  
pp. 6
Author(s):  
Potiwa Purazi ◽  
Seeprarani Rath ◽  
Ashmita Ramanah ◽  
Isadore Kanfer

In vitro release testing (IVRT) provides an efficient method for the evaluation of drug release from semi-solid formulations. The aim of this research was to develop and validate a discriminatory IVRT system using vertical diffusion cells (VDCs) to assess generic topical products containing miconazole nitrate (MCZ). A comprehensive approach addressing all essential suitability criteria supporting the reliability of IVRT results was applied. These include mechanical validation of the VDCs, a performance verification test (PVT), validation of the analytical method (HPLC) used to quantify the drug release and validation of the IVRT method to confirm its precision, reproducibility, discriminatory ability, and robustness. Two marketed generic products were tested and assessed in accordance with the acceptance criteria for “sameness” in the FDA’s SUPAC-SS guidance which requires that the 90% confidence interval (CI) should fall within the limits of 75%–133.33%. One product was found to be in vitro equivalent to the reference product whereas the other was not. The results confirmed the suitability of the IVRT method to accurately measure the release of MCZ from topical cream products and, importantly, demonstrated the necessary discriminatory ability to assess “sameness”/differences of dermatological creams containing MCZ. Furthermore, the developed IVRT method was able to detect differences between formulations, which may be attributed to qualitative (Q1) and quantitative (Q2) properties and the microstructure and arrangement of matter (Q3).


Author(s):  
N. MADHURI ◽  
N. TEJASWINI ◽  
MEENAL PATEL ◽  
P. JYOTHI ◽  
K. JYOTHSNA ◽  
...  

Objective: The objectives of the present study were to optimize and evaluate the ethosomal suspension of miconazole nitrate for the treatment of local and systemic fungal infections. Methods: Miconazole topical formulation is prepared for better patient compliance and to reduce the dose of a drug. Miconazole nitrate ethosomes were prepared by the cold method using factorial designing with Ethanol(X1), IPA(Isopropyl alcohol)(X2), and Lecithin(X3) as Independent variables and % EE(Entrapment efficiency)(Y1) and % DR(drug release at 8th h)(Y2) was selected as responses. Results: The results obtained in the design showed that there was no significant interaction among factors. The lecithin concentration had a positive response on % EE, while ethanol concentration and IPA had a positive effect. For % DR, Ethanol, and IPA showed a positive effect and Lecithin had a negative response. The formulation EM22 (3 ml X1,3 ml X2 and 300 mg of X3) characterized by high % EE(77.3 %) and optimum % DR(94.2%) and formulation EM6 (2 ml X1,2 ml X2 and 100 mg of X3) characterized by high % DR(97.32 %) and optimum % EE (74.8 %). EM22 was incorporated in the gel as it is showing more entrapment efficiency and compared with the marketed product for drug release. Conclusion: From the result, it was concluded that formulated ethosomal suspension and optimized gel have more drug release than marketed formulation so that formulated suspension can be used for the preparation of antifungal gels, creams, ointments for sustained release.


2017 ◽  
Vol 68 (10) ◽  
pp. 2346-2349
Author(s):  
Magdalena Birsan ◽  
Nela Bibire ◽  
Madalina Vieriu ◽  
Alina Diana Panainte ◽  
Ileana Cojocaru

Original pharmaceutical formulations have been produced as oral biomucoadhesive tablets for antifungal medication. They have been obtained through direct compression using as matrix forming polymers various sorts of hydroxypropyl methylcellulose. The main goal of the study was determining the swelling index of the new mucobioadhesive formulations with miconazole nitrate in order to correctly evaluate the time of contact with mucosa, and the prolongation of drug release. For each formulation, the flowing parameters have been determined: flowing time, friction coefficient, repose angle, Haussner ratio, Carr index, and the swelling index for 6 formulations containing various sorts of hydroxypropyl methylcellulose as matrix molders, while the formulation variables studied were time and association ratio between those polymers. Though results analysis, we noticed that the values of the swelling index depended on the type and quantity of polymer, results that could also be explained by the proportionality relationship to flowing and compressibility parameters.


2017 ◽  
Vol 2 (3) ◽  

Melanoma is the most dangerous type of skin cancer in which mostly damaged unpaired DNA starts mutating abnormally and staged an unprecedented proliferation of epithelial skin to form a malignant tumor. In epidemics of skin, pigment-forming melanocytes of basal cells start depleting and form uneven black or brown moles. Melanoma can further spread all over the body parts and could become hard to detect. In USA Melanoma kills an estimated 10,130 people annually. This challenge can be succumbed by using the certain anti-cancer drug. In this study design, cyclophosphamide were used as a model drug. But it has own limitation like mild to moderate use may cause severe cytopenia, hemorrhagic cystitis, neutropenia, alopecia and GI disturbance. This is a promising challenge, which is caused due to the increasing in plasma drug concentration above therapeutic level and due to no rate limiting steps involved in formulation design. In this study, we tried to modify drug release up to threefold and extended the release of drug by preparing and designing niosome based topical gel. In the presence of Dichloromethane, Span60 and cholesterol, the initial niosomes were prepared using vacuum evaporator. The optimum percentage drug entrapment efficacy, zeta potential, particle size was found to be 72.16%, 6.19mV, 1.67µm.Prepared niosomes were further characterized using TEM analyzer. The optimum batch of niosomes was selected and incorporated into topical gel preparation. Cold inversion method and Poloxamer -188 and HPMC as core polymers, were used to prepare cyclophosphamide niosome based topical gel. The formula was designed using Design expert 7.0.0 software and Box-Behnken Design model was selected. Almost all the evaluation parameters were studied and reported. The MTT shows good % cell growth inhibition by prepared niosome based gel against of A375 cell line. The drug release was extended up to 20th hours. Further as per ICH Q1A (R2), guideline 6 month stability studies were performed. The results were satisfactory and indicating a good formulation approach design was achieved for Melanoma treatment.


2012 ◽  
Vol 1 (8) ◽  
pp. 186 ◽  
Author(s):  
Urmi Das ◽  
Mohammad Salim Hossain

<p>Sustained release Carvedilol matrix tablets constituting Kollidon SR were developed in this study in an attempt to investigate the effect of release modifiers on the release profile of Carvedilol from matrix. Three matrix tablet formulations were prepared by direct compression of Kollidon SR in combination with release modifier (HPMC and Microcrystalline Cellulose) and magnesium stearate. Tablets containing only Kollidon SR with the active ingredient demonstrated a rapid rate of drug release. Incorporation of HPMC in the matrix tablet prolonged the release of drug but incorporation of Microcrystalline Cellulose showed superimposable release pattern with an initial burst effect as confirmed by mean dissolution time and Higuchi release rate data. After 7 hours of dissolution, Carvedilol release from the matrix systems were 91.42%, 83.41%, from formulation F1 and F2 respectively. Formulation F3 exhibited 100 % release at 4 hours. All the tablet formulations showed acceptable pharmaco-technical properties and complied with the in-house specifications for tablet weight variation, friability, hardness, thickness, and diameter. Prepared tablets also showed sustained release property for carvedilol. The drug release mechanism from the matrix tablets of F1 and F2 was found to be followed by Fickian and F3 by Non-Fickian mechanism.</p><p>DOI: <a href="http://dx.doi.org/10.3329/icpj.v1i8.11095">http://dx.doi.org/10.3329/icpj.v1i8.11095</a></p> <p>International Current Pharmaceutical Journal 2012, 1(8): 186-192</p>


2019 ◽  
Vol 1 (1) ◽  
pp. 7
Author(s):  
R Nahrowi ◽  
A Setiawan ◽  
Noviany Noviany ◽  
I Sukmana ◽  
S D Yuwono

Paclitaxel is one of the cancer drugs that often used. These drug kills cancer cells byinhibiting mitotic cycle. The efficiency of paclitaxel is increased by the use ofnanomaterials as a carrier of paclitaxel. Nanomaterials can enhance encapsulationefficiency, improve the drug release to the target cell following nanomaterialdegradation, and improve local accumulation of drug in the cell through endocytosisreceptor. Nanomaterial that often used forencapsulation of paclitaxel is a polymerderived from natural resources such as cellulose. The advantages of cellulose as acarrier of paclitaxel are nontoxic, biodegradable, and very abundant from varioussources. One of the potential sources of cellulose for drug delivery system is cassavabaggase.Keywords: Paclitaxel, encapsulation, cell viability, nanocellulose


Author(s):  
EL- Assal I. A. ◽  
Retnowati .

Objective of the present investigation was enthused by the possibility to develop solid lipid nanoparticles (SLNs) of hydrophilic drug acyclovir. Also study vitro and vivo drug delivery. Methods: Drug loaded SLNs (ACV-SLNs) were prepared by high pressure homogenization of aqueous surfactant solutions containing the drug-loaded lipids in the melted or in the solid state with formula optimization study (Different lipid concentration, drug loaded, homogenization / stirring speed and compritol 888ATO: drug ratio). ACV - SLN incorporated in cream base. The pH was evaluated and rheological study. Drug release was evaluated and compared with simple cream- drug, ACV – SLN with compritol 888ATO and marketed cream. The potential of SLN as the carrier for dermal delivery was studied. Results: Particle size analysis of SLNs prove small, smooth, spherical shape particle ranged from 150 to 200 nm for unloaded and from 330 to 444 nm for ACV loaded particles. The EE% for optimal formula is 72% with suitable pH for skin application. Rheological behavior is shear thinning and thixotropic. Release study proved controlled drug release for SLNs especially in formula containing compritol88 ATO. Stability study emphasized an insignificant change in SLNs properties over 6 month. In-vivo study showed significantly higher accumulation of ACV in stratum corneum, dermal layer, and receptor compartment compared with blank skin. Conclusion: AVC-loaded SLNs might be beneficial in controlling drug release, stable and improving dermal delivery of antiviral agent(s).


Sign in / Sign up

Export Citation Format

Share Document