scholarly journals STATISTICAL OPTIMIZATION AND EVALUATION OF ETHOSOMAL MICONAZOLE NITRATE SUSPENSION

Author(s):  
N. MADHURI ◽  
N. TEJASWINI ◽  
MEENAL PATEL ◽  
P. JYOTHI ◽  
K. JYOTHSNA ◽  
...  

Objective: The objectives of the present study were to optimize and evaluate the ethosomal suspension of miconazole nitrate for the treatment of local and systemic fungal infections. Methods: Miconazole topical formulation is prepared for better patient compliance and to reduce the dose of a drug. Miconazole nitrate ethosomes were prepared by the cold method using factorial designing with Ethanol(X1), IPA(Isopropyl alcohol)(X2), and Lecithin(X3) as Independent variables and % EE(Entrapment efficiency)(Y1) and % DR(drug release at 8th h)(Y2) was selected as responses. Results: The results obtained in the design showed that there was no significant interaction among factors. The lecithin concentration had a positive response on % EE, while ethanol concentration and IPA had a positive effect. For % DR, Ethanol, and IPA showed a positive effect and Lecithin had a negative response. The formulation EM22 (3 ml X1,3 ml X2 and 300 mg of X3) characterized by high % EE(77.3 %) and optimum % DR(94.2%) and formulation EM6 (2 ml X1,2 ml X2 and 100 mg of X3) characterized by high % DR(97.32 %) and optimum % EE (74.8 %). EM22 was incorporated in the gel as it is showing more entrapment efficiency and compared with the marketed product for drug release. Conclusion: From the result, it was concluded that formulated ethosomal suspension and optimized gel have more drug release than marketed formulation so that formulated suspension can be used for the preparation of antifungal gels, creams, ointments for sustained release.

Author(s):  
Botre P.P ◽  
Maniyar M.G.

The objective of this study was to develop suitable solid lipid nanoparticles for topical delivery of Bifonazole. Bifonazole is an imidazole antifungal drug used in form of ointments. It was patented in 1974 and approved for medical use in 1983. Bifonazole having broad spectrum activity against dermatophytes, moulds, yeasts, fungi and some gram positive bacteria. BFZ SLNs systems were developed by melt emulsification followed by solvent evaporation technique using Compritol 888ATO (Glyceryl behenate) as a solid lipid and Tween 80 as a surfactant. Developed SLNs were evaluated for particle size, polydispersity index (PI), entrapment efficiency (EE) and drug release profiles. Process and formulation parameters were optimized. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies were carried out on SLNs to mark the changes in the drug and lipid modifications. The BFZ SLNs based gels were prepared using Carbopol 940 as a gelling agent. The SLNs based gels were evaluated for rheological parameters, in vitro drug release and permeation studies. In vitro antifungal study suggested that the SLNs based gel was more effective in inhibiting growth of Candida albicans. Thus the study concludes that SLNs based gel of BFZ gives a sustained release profile of BFZ and has the potential for treatment of topical fungal infections.


2018 ◽  
Vol 10 (2) ◽  
pp. 83
Author(s):  
Milind P. Wagh ◽  
Swati S. Mutha( Bora)

Objective: The objective of this study was to assess the development of ethosomal drug delivery system for site-specific topical delivery of rizatriptan benzoate (RBZ) for sustained action.Methods: In the present study ethosomes were prepared using the cold method. The formulation was optimized using 33 full factorial designs. The lipid concentration (X1), ethanol concentration (X2) and stirring speed (X3) were selected as independent factors and the vesicle size (Y1) and % entrapment efficiency (Y2) were selected as dependent variables.Results: The equation of multiple regression revealed that there was no significant interaction among factors. The lipid concentration had a positive effect on vesicle size while ethanol concentration and stirring speed had a negative effect. For entrapment efficiency, all factors showed a positive effect while lipid concentrative found to be the main influencing factor. The formulation F4E459 (4% SPC, 45% v/v ethanol 900 RPM), which was characterized by optimum vesicle size (5.5 µm) and high entrapment efficiency (93.32%), was considered to be an optimal formulation. The scanning electron microscopy (SEM) results showed that RBZ ethosome have a smooth surface. The polydispersity index (PI) and zeta potential of the optimized formulation were found to be 0.493±0.021and–21.3 mV respectively. In vitro permeation through rat abdominal skin from the ethosomal gel followed Higuchi diffusion model over a period of 8 h.Conclusion: The results obtained in this research work clearly indicated a promising potential of ethosomal carrier system of RBZ for migraine treatment with a topical approach for sustained action.


2020 ◽  
Vol 18 ◽  
Author(s):  
Amaravathi Murali Krishna ◽  
Venkatesh Dinnekere Putte Gowda ◽  
Roopa Karki

Background: Nanosponges is a novel approach of topical drug delivery, especially for the fungal infections. Nanosponges are a unique class of nanoparticles with three-dimensional nanostructure in nanometers wide cavities, which can encapsulate both hydrophilic and lipophilic substances, will provide increased efficacy and safety. Objective: To formulate and evaluate Bifonazole loaded nanosponges in hydrogels for the treatment of fungal diseases. Methods: Bifonazole-loaded nanosponges to be formulated using emulsion solvent diffusion technique. Interaction of drugethyl cellulose polymer along with other excipients’ was done by using FTIR as well as DSC. The nanosponges formulations were evaluated with different parameters. Results: Bifonazole loaded nanosponges’ particle size and zeta potential for formulations were between the range of 183.7 to 560.2 nm and –17.77 to –21.9 mV, respectively. Surface morphology of nanosponges by SEM disclosed that it was spherical and porous in nature. Drug entrapment efficiency was found to be 45.44 to 79.71%. The drug release study was done by using phosphate buffer pH 6.8. Further in vitro release data is fitted in to kinetic models. The optimized formulation M6 has incorporated hydrogels, further evaluated skin irritation, in vitro drug release, viscosity and pH using a rat model. Stability studies of hydrogel formulation MH2 revealed that no changes in in-vitro drug release, pH and drug content study at the completion of 6 months. Conclusion: Thus, it indicated that the prepared Bifonazole loaded nanosponges into hydrogel was stable. Hence, it could be a suitable dosage form for the cure of fungal infections in the skin.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Sanjay Dey ◽  
Soumen Pramanik ◽  
Ananya Malgope

The aim of the current study was to formulate and optimize the formulation on the basis of in vitro performance of microsphere. A full factorial design was employed to study the effect of independent variables, polymer-to-drug ratio () and stirring speed (), on dependent variables, encapsulation efficiency, particle size, and time to 80% drug release. The best batch exhibited a high entrapment efficiency of 70% and mean particle size 290 μm. The drug release was also sustained for more than 12 hours. The study helped in finding the optimum formulation with excellent sustained drug release.


Author(s):  
Arti Bagada ◽  
K R Vadalia ◽  
M K Raval ◽  
Dolly Gadhia

This investigation aimed to prepare Cilnidipine Nanoparticles by nanoprecipitation ultrasonication method and to study the significance of processing variables by applying quality by design. Cilnidipine is fourth-generation dual L/N-type Ca2+ channel blocker used for the management of hypertension. It is BCS class-II drug exhibiting lower aqueous solubility, which tends to lower bioavailability. The combination of Poloxamer 188 and Tween 80 was used as a stabilizer. The design of the experiment is one of the tools of Quality by design. Plackett-Burman design was applied for the screening of processing variables, which are significant for the method. The processing variables screened were stirring speed, antisolvent ratio, drug concentration, polymer concentration, stabilizer concentration. The effect of each parameter evaluated by particle size, entrapment efficiency, and drug release at 10 minutes of prepared Nanoparticles of Cilnidipine. Analysis of variance and Pareto-plot of Plackett-Burman design were utilized to find the significance of the factor and extent of the effect. The surface morphology of Cilnidipine Nanoparticles was studied by SEM. The Pareto plot, as well as statistical analysis of design, had shown that the Concentration of drug, solvent: antisolvent ratio and concentration of poloxamer 188 were the significant parameters for the method. The stabilizer concentration, the stirring speed, and the antisolvent ratio had a negative effect of while the concentration of drug has a positive effect on the particle size of Nanoparticles and drug release at 10 minutes and positive effect of entrapment efficiency of Cilnidipine Nanoparticles. The Cilnidipine Nanoparticles were characterized by FTIR and DSC analysis.


Author(s):  
Sanaa El Gizaway ◽  
Maha Fadel ◽  
Basma Mourad ◽  
Fatma El-zahraa Abd Elnaby

Objective: The main aim of this study was to design and characterise betamethasone di-propionate loaded transfersomes (BD-T); as a topical formulation for the treatment of localized plaque psoriasis.Methods: A full factorial design (23) was applied to study the effects of three independent variables: drug content, type of surfactants and surfactant contents on particle size (PS), entrapment efficiency (EE %), zeta potential (ZP), polydispersity index (PI) and drug release profiles. The optimized BD-T was formulated as a hydrogel using 5% sodium carboxymethyl cellulose. The gel was characterized for viscosity, drug content, in vitro drug release and stability. A comparative clinical study was performed on 20 patients with psoriasis to investigate the effect of BD-T gel and the marketed betamethasone dipropionate (BD) cream.Results: The optimized BD-T formulation containing 50 mg betamethasone dipropionate (BD) and 5 mg tween 80 showed spherical unilamellar vesicles with an average particle size of 242.80, % EE of 90.19%, ZP of-15.00 mV, PI of 0.407 and K0 of 4.290 mg/hr. The formulation showed good stability at 4 °C and 25 °C for 6 mo. The results revealed significant clinical improvement and a significant increase in safety and tolerability with BD-T gel compared with BD cream.Conclusion: As a conclusion, BD-T was found to be more effective, safe and tolerable for the treatment of psoriasis compared with the marketed product.


Author(s):  
Moreshwar Patil ◽  
Pallavi Bhagade ◽  
Meghana Amale ◽  
Sandeep Sonawane ◽  
Sanjay Kshirsagar

Aim: The aim of this study was to develop effective topical antifungal formulation containing sertaconazole nitrate. Background: Sertaconazole nitrate, topical antifungal was incorporated in solid-liquid lipid nanostructures and gelled further for topical application. Objective: The objective of this investigation was to develop a topical formulation containing sertaconazole nitrate which was incorporated in the solid state of matrix to prolong the release in deep skin infection and hence reduce the application frequency. Methods: The nanostructured lipid carriers of sertaconazole nitrate were developed by high speed homogenization followed by ultrasonication using Estosoft-GTS® (glyceryl tristearate) as a solid lipid, oleic acid as liquid lipid and Tween 80 as an emulsifier. Central composite design was used to optimize total lipid concentration and fraction of liquid lipid in the total lipid and its effect on entrapment efficiency and drug release was determined. Results: The carrier particles had an average size of 366.3 nm; entrapment efficiency in between 50.66% to 87.36%; cumulative drug release up to 92.90% and zeta potential of 7.43 mV. Characterization by FTIR indicated no negative interaction between drug and excipients, XRD showed disappearance of crystalline peaks of the encapsulated drug while DSC revealed complete solubilization of the drug. About 99.6% of drug was estimated by HPLC method. The drug release from gel and cream was 25.04% and 72.97% respectively. The lipid and gel excipients did not interfere with antifungal activity of the drug. Conclusion: The developed nanocarriers loaded gel were stable. It prolonged the drug release (for 24 hours) than marketed cream. It could be a promising concept for topical delivery of antifungal and anti-inflammatory materials.


Author(s):  
SHAILESH SHARMA ◽  
NIMRATA SETH

Objective: In the present protocol, employability of polymethacrylate polymer Eudragit RS100 for development of microparticles of water soluble drug with desired values of response variables was investigated by central composite optimization design through application of Design Expert® software (Series DX10). Methods: The microparticles were developed by emulsion solvent evaporation process employing Eudragit RS100. Two effective independent variables drug: polymer ratio and stirring speed were selected to assess performance prospective of Eudragit on mean particle size, entrapment efficiency, percent yield and drug release in 12 h of microparticles. Thirteen batches generated by software were prepared and subjected to different characterization test parameters obligatory for the evaluation of formulation. Validation of optimization model and Statistical interpretation of results was done using Analysis of Variance (ANOVA) Results: ANOVA indicated that the independent variables had significant effect on response variables. Optimized formulation demonstrated close agreement amongst experimental and predicted responses with high desirability factor. In vitro drug liberation study for optimized formulation proposed a sustained release of drug from microparticles. Conclusion: In conclusion, optimization technique was imperative in indicating the efficient applicability of Eudragit RS100 polymer in controlling the drug release of hydrophilic drugs.


Author(s):  
Misbah Khanum ◽  

The objective of this work was to prepare Fluconazole nanoparticles, and then incorporated into the freshly prepared gel for transdermal delivery, reducing the oral side effects of the drug and forenhancing stability. Fluconazole is commonly used antifungal agents for the treatment of local and systemic fungal infections. In this study Fluconazole nanoparticles was prepared by using Eudragit RL 100 by nanoprecipitation method with different drugs to polymer (1:1, 1:2 and 1:3) and stabilizer (Poloxamer 188) ratios (0.5%, 0.75% and 1%) and evaluated for various parameters. Drug-excipients compatibility was performed by FTIR study. The particle size, polydispersity index, Zeta potential, % Entrapment efficiency and % drug content of all the formulations were found in the range of 16.8 to 48.9nm, 0.229 to 0.558, -11.6 to -26.6 mv, 28.41% to 95.78% and 59% to 97.38%. From SEM studies it was revealed that Fluconazole nanoparticles particles are spherical in shape and without any agglomeration. From the in-vitro drug release study, it was revealed that sustained release of same formulation last up to 12 hours. From the stability study, it was revealed that the F5 formulation was stable at 40°C ± 2°C /75% ± 5%RH and 4°C. The optimised formulation F5 was selected to prepare Fluconazole loaded nanoparticles based topical gels using different concentration of Carbopol 934 and 940 and characterized for pH, spreadability, drug content, viscosity and in-vitro drug diffusion. Among the five formulations, G5 was selected as the best formulation. The pH of all formulations was found near to the skin pH value. The in-vitrodiffusion study of Fluconazole gel (G5) showed 94.75%. The optimized formulation G5 was checked for mechanism and kinetics of drug release. It is found it following Zero order release and non-Fickian mechanism. The selected Gel formulation G5 was found to be stable at 40°C ± 2°C /75% ± 5%RH and 4°C, it is clear that the formulation did not undergo any chemical changes found more stable at room temperature


Author(s):  
Anamika Saxena Saxena ◽  
Santosh Kitawat ◽  
Kalpesh Gaur ◽  
Virendra Singh

The main goal of any drug delivery system is to achieve desired concentration of the drug in blood or tissue, which is therapeutically effective and nontoxic for a prolonged period. Various attempts have been made to develop gastroretentive delivery systems such as high density system, swelling, floating system. The recent developments of FDDS including the physiological and formulation variables affecting gastric retention, approaches to design single-unit and multiple-unit floating systems, and their classification and formulation aspects are covered in detail. Gastric emptying is a complex process and makes in vivo performance of the drug delivery systems uncertain. In order to avoid this variability, efforts have been made to increase the retention time of the drug-delivery systems for more than 12 hours. The floating or hydrodynamically controlled drug delivery systems are useful in such application. Background of the research: Diltiazem HCL (DTZ), has short biological half life of 3-4 h, requires rather high frequency of administration. Due to repeated administration there may be chances of patient incompliance and toxicity problems. Objective: The objective of study was to develop sustained release alginate beads of DTZ for reduction in dosing frequency, high bioavailability and better patient compliance. Methodology: Five formulations prepared by using different drug to polymer ratios, were evaluated for relevant parameters and compared. Alginate beads were prepared by ionotropic external gelation technique using CaCl2 as cross linking agent. Prepared beads were evaluated for % yield, entrapment efficiency, swelling index in 0.1N HCL, drug release study and SEM analysis. In order to improve %EE and drug release, LMP and sunflower oil were used as copolymers along with sodium alginate.


Sign in / Sign up

Export Citation Format

Share Document