Nanomaterials of natural bioactive compounds for wound healing: Novel drug delivery approach

2021 ◽  
Vol 18 ◽  
Author(s):  
Vinay Kant ◽  
Pooja Kumari ◽  
Dhaval Kamothi ◽  
Munish Ahuja ◽  
Vinod Kumar

: Wound healing is biological phenomenon of the body involving sequential biochemical processes that are primarily involved in restoring the cellular integrity of the organ. The market related to wound-care products has extensively been expanded and crossed over fifteen billion US dollar, along with twelve billion US dollar for treating wound scars. Different bioactive compounds have shown their various pharmacological actions including wound healing activity. Natural bioactive agents have gained much attention in wound management due to their beneficial nature of possessing least side effects. Some of the bioactive compounds which have shown pronounced wound healing potentials include curcumin, quercetin, lawsone, resveratrol, aloe vera, astragaloside, essential oils, growth factors, andrographolide, bilirubin etc. Most of the natural bioactive agents have limited applicability in clinical practices due to poor aqueous solubility, fast degradation rate and low bioavailability. These problems have been overcome in last few years by encapsulating them into nano-formulations. The nanomaterial of bioactive agents offers discrete advantages like high surface area to volume ratio and nanoscale size offering alternations in physical and chemical properties. Theses nanomaterials also have sustained controlled release delivery, which seems very effective for the lengthy process of wound healing. Many investigations by the global researchers have focused on the emergence of nanomaterials in wound healing applications. In the present review, different natural bioactive agents in the form of nano formulations have been discussed for wound healing potentials.

2021 ◽  
Vol 12 ◽  
Author(s):  
Riti T. Kapoor ◽  
Marcia R. Salvadori ◽  
Mohd Rafatullah ◽  
Masoom R. Siddiqui ◽  
Moonis A. Khan ◽  
...  

The nanomaterials synthesis is an intensifying research field due to their wide applications. The high surface-to-volume ratio of nanoparticles and quick interaction capacity with different particles make them as an attractive tool in different areas. Conventional physical and chemical procedures for development of metal nanoparticles become outmoded due to extensive production method, energy expenditure and generation of toxic by-products which causes significant risks to the human health and environment. Hence, there is a growing requirement to search substitute, non-expensive, reliable, biocompatible and environmental friendly methods for development of nanoparticles. The nanoparticles synthesis by microorganisms has gained significant interest due to their potential to synthesize nanoparticles in various sizes, shape and composition with different physico-chemical properties. Microbes can be widely applied for nanoparticles production due to easy handling and processing, requirement of low-cost medium such as agro-wastes, simple scaling up, economic viability with the ability of adsorbing and reducing metal ions into nanoparticles through metabolic processes. Biogenic synthesis of nanoparticles offers clean, non-toxic, environmentally benign and sustainable approach in which renewable materials can be used for metal reduction and nanoparticle stabilization. Nanomaterials synthesized through microbes can be used as a pollution abatement tool as they also contain multiple functional groups that can easily target pollutants for efficient bioremediation and promotes environmental cleanup. The objective of the present review is to highlight the significance of micro-organisms like bacteria, actinomycetes, filamentous fungi, yeast, algae and viruses for nanoparticles synthesis and advantages of microbial approaches for elimination of heavy metals, dyes and wastewater treatment.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1234 ◽  
Author(s):  
Hariharan Ezhilarasu ◽  
Dinesh Vishalli ◽  
S. Thameem Dheen ◽  
Boon-Huat Bay ◽  
Dinesh Kumar Srinivasan

Diabetes mellitus (DM) is a common endocrine disease characterized by a state of hyperglycemia (higher level of glucose in the blood than usual). DM and its complications can lead to diabetic foot ulcer (DFU). DFU is associated with impaired wound healing, due to inappropriate cellular and cytokines response, infection, poor vascularization, and neuropathy. Effective therapeutic strategies for the management of impaired wound could be attained through a better insight of molecular mechanism and pathophysiology of diabetic wound healing. Nanotherapeutics-based agents engineered within 1–100 nm levels, which include nanoparticles and nanoscaffolds, are recent promising treatment strategies for accelerating diabetic wound healing. Nanoparticles are smaller in size and have high surface area to volume ratio that increases the likelihood of biological interaction and penetration at wound site. They are ideal for topical delivery of drugs in a sustained manner, eliciting cell-to-cell interactions, cell proliferation, vascularization, cell signaling, and elaboration of biomolecules necessary for effective wound healing. Furthermore, nanoparticles have the ability to deliver one or more therapeutic drug molecules, such as growth factors, nucleic acids, antibiotics, and antioxidants, which can be released in a sustained manner within the target tissue. This review focuses on recent approaches in the development of nanoparticle-based therapeutics for enhancing diabetic wound healing.


2020 ◽  
Vol 7 (3) ◽  
pp. 161-178
Author(s):  
Jiabai Cai ◽  
Shunxing Li

Nanostructured materials often exhibit unique physical properties, such as fast carrier transport, subwavelength optical waveguiding, and a high surface-area-to-volume ratio. When the size of a material is reduced to nanoscale dimensions, its physical and chemical properties can change dramatically. In addition, nanostructures offer exciting new opportunities for environmental applications. In this review, we aim to provide an up-to-date summary of recent research related to multifunctional TiO2-based inorganic and organic semiconductor nanomaterials, covering both their synthesis and applications. After a brief introduction of the definition and classification of TiO2-based inorganic and organic semiconductor nanomaterial structures, we discuss various application strategies, such as sewage treatment, heavy metal removal, and the oxidation of alcohols to the corresponding aldehydes. In our previous work, we fabricated a variety of TiO2-based hollow spheres using a diverse range of materials from inorganic semiconductors to organic semiconductors and applied these structures as photocatalysts. Further, the development of these nanostructures may enable numerous applications in the field of environmental technology.


2008 ◽  
Vol 1087 ◽  
Author(s):  
S. Mizuno ◽  
K. Shintani

AbstractMetallic clusters show excellent performance as catalysts because of their high surface-to-volume ratio. An inert-gas aggregation source is an experimental method by which clusters are produced. In such a method, cluster coalescence is one of growth modes of clusters. Bimetallic clusters also attract much attention of researchers because of their novel physical and chemical properties. At coalescence of two metallic clusters of different species, alloying or core-shell structuring tends to occur spontaneously. Resulting alloyed clusters or core-shell clusters will behave as unique catalysts. In this paper, morphological evolution of two metallic clusters of different elements at coalescence is investigated using molecular-dynamics simulation. All pair combinations of the elements Au, Ag, Pt, and Pd are considered. The interactions between such metallic atoms are calculated by using generic embedded-atom method (GEAM) potential. Two clusters of icosahedral structure are equilibrated at specified temperature beforehand. The two clusters are put close to each other, where the nearest two atoms belonging to the two clusters, respectively, start to interact with each other. After coalescence the original surfaces of the two clusters decrease, and the surface energy is transformed into the kinetic energy. Consequently, the temperature of the united cluster rises. If this temperature is higher than the melting temperature, melting and local alloying at the interface occur. If alloying spreads into the united cluster, an alloyed bimetallic cluster is synthesized. If melting occurs only in one of the two clusters, and the atoms in liquid phase gradually cover the surface of the other cluster, a core-shell cluster appears. The morphological evolutions in the two modes of coalescence are followed, and under what conditions each mode of coalescence occurs is discussed.The results show that the surface energy and atom size of two clusters determine which mode is selected at coalescence.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Eriberto Bressan ◽  
Letizia Ferroni ◽  
Chiara Gardin ◽  
Chiara Rigo ◽  
Michele Stocchero ◽  
...  

Nanotechnology has gone through a period of rapid growth, thus leading to the constant increase in the application of engineered nanomaterials in daily life. Several different types of nanoparticles have been engineered to be employed in a wide array of applications due to their high surface to volume ratio that leads to unique physical and chemical properties. So far, silver nanoparticles (AgNps) have been used in many more different medical devices than any other nanomaterial, mainly due to their antimicrobial properties. Despite the promising advantages posed by using AgNps in medical applications, the possible health effects associated with the inevitable human exposure to AgNps have raised concerns as to their use since a clear understanding of their specific interaction with biological systems has not been attained yet. In light of such consideration, aim of the present work is the morphological analysis of the intracellular behavior of AgNps with a diameter of 10 nm, with a special attention to their interaction with mitochondria.


2018 ◽  
Vol 7 (2) ◽  
Author(s):  
Ajay Vikram Singh ◽  
Donato Gemmati ◽  
Anurag Kanase ◽  
Ishan Pandey ◽  
Vatsala Misra ◽  
...  

Nanobiomaterials application into tissue repair and ulcer management is experiencing its golden age due to spurring diversity of translational opportunity to clinics. Over the past years, research in clinical science has seen a dramatic increase in medicinal materials at nanoscale those significantly contributed to tissue repair. This chapter outlines the new biomaterials at nanoscale those contribute state of the art clinical practices in ulcer management and wound healing due to their superior properties over traditional dressing materials. Designing new recipes for nanobiomaterials for tissue engineering practices spanning from micro to nano-dimension provided an edge over traditional wound care materials those mimic tissue in vivo. Clinical science stepped into design of artificial skin and extracellular matrix components emulating the innate structures with higher degree of precision. Advances in materials sciences polymer chemistry have yielded an entire class of new nanobiomaterials ranging from dendrimer to novel electrospun polymer with biodegradable chemistries and controlled molecular compositions assisting wound healing adhesives, bandages and controlled of therapeutics in specialized wound care. Moreover, supportive regenerative medicine is transforming into rational, real and successful component of modern clinics providing viable cell therapy of tissue remodeling. Soft nanotechnology involving hydrogel scaffold revolutionized the wound management supplementing physicobiochemical and mechanical considerations of tissue regeneration. Moreover, this chapter also reviews the current challenges and opportunities in specialized nanobiomaterials formulations those are desirable for optimal localized wound care considering their in situ physiological microenvironment.


2015 ◽  
Vol 1109 ◽  
pp. 60-63
Author(s):  
Md. Motiar Rahman ◽  
Md Eaqub Ali ◽  
Mst. Gulshan Ara ◽  
Sharifah Bee Abd Hamid ◽  
Md. Motalib Hossain

Selective oxidation of alkyl benzene, to its corresponding oxygen containing products, is a crucial reaction in organic researches and industrial manufacturing. In particular, the direct oxidation of lavish and cheapest aromatics, having carbon-hydrogen bonds, into corresponding ketones are the key transformations as the oxidation products are very important platform compounds for the production of useful prime, special chemicals and high economic valued fine chemicals, agrochemicals, pharmaceutical and perfumes in large scale. However, the oxidations of aromatic hydrocarbons have been remaining a challenging task due to the limitations of a suitable catalyst and requirement of chemical treatments (potassium permanganate/dichromate and ammonium cerium nitrate) which have been proven to be corrosive, not reusable, hazardous, and environmentally unfriendly and, also, have no selectivity at all. Instead of, scientists are paying more attention to use heterogeneous green catalysts along with support as well as novel oxidants e.g. hydrogen peroxide, tert-butyl peroxide and so on, due to its ecofriendly nature and availability. Silica/carbon/metal oxide supported nanoporous gold is a favorable catalyst due to its three dimensional open pore network structures, high surface to volume ratio, high reusability, distinct optolectronic and physio-chemical properties. Mesoporous carbon/silica/metal oxide supports provide well scattering of metal nanocatalysts and facilitate the transportation of molecules through the nanopores/nanochannels, thus increase the product with lowest cost and time. This paper has reviewed various gold-skeleton green catalysts and their synthetic method and mechanistic schemes for the selective oxidation of alkyl substituted aromatics.


2014 ◽  
Vol 995 ◽  
pp. 125-143 ◽  
Author(s):  
Md. Abdul Aziz ◽  
Munetaka Oyama

Nanomaterial based electrochemical method gain tremendous interest for the detection of biomolecules due to high sensitivity, selectivity, and low fabrication cost. High surface to volume ratio, excellent electrocatalytic properties of the nanomaterials plays important role for the sensitive and selective detection of biomolecules. For electrochemical biosensors, proper control of chemical, electrochemical and physical properties, as well as their functionalization and surface immobilization significantly influences the overall performance. This chapter gives an overview of the importance of the development of nanomaterials based electrochemical biosensors; particularly direct electrooxidation-or electroreduction-based biosensors, catalysis-based biosensors, and label-based affinity biosensors. In addition, fabrication methods including modification of electrode surface with nanomaterials, tailoring their physico-chemical properties, and functionalization with chemicals or biomolecules are also highlighted.


2014 ◽  
Vol 2014 (DPC) ◽  
pp. 000608-000631
Author(s):  
Bruce Kim ◽  
Anurag Gupta

ZnO nanowires have been a focus of intense research in recent decade. The superior physical and chemical properties demonstrated by these nanostructures stem from their unique morphology and surface structures. High surface-to-volume ratio concomitant with their semiconducting yet inert nature makes them a high potential material for developing varied spectrum of devices. Specifically, their favorable surface chemistry makes them an ideal candidate for developing highly sensitive chemical gas sensor. In this work, ZnO nanowires have been utilized in array morphology to develop a sensing device and platform with back-end electronics for remotely monitoring and logging real-time carbon dioxide concentration. Vertically oriented, hierarchical nanowire arrays were grown on insulating sapphire substrate. The extremities of the nanowire grown substrates were contacted with colloidal silver to form electrodes. The I-V characteristics of the sensing device were determined through a semiconductor parameter analyzer and the data obtained was used to calibrate the electronics needed for the sensing platform. The overall topology of the sensing platform comprises a nanowire-based sensing device that interfaces with an analog sensing board that processes data in real-time and transmits it over a wireless protocol. The receiver end is equipped with electronics to decode the digital packets and a GUI to display obtained data in real-time. The sensor chip is operated at 150C to provide the necessary activation energy to the oxygen surface sites on ZnO nanowires to take part in sensing operation for attracting and detecting carbon dioxide molecules.


2014 ◽  
Vol 925 ◽  
pp. 38-42 ◽  
Author(s):  
Md Eaqub Ali ◽  
Md. Motiar Rahman ◽  
Sharifah Bee Abd Hamid

Catalytic oxidation of alkyl substituted benzenes is an essential route for the synthesis of a number of important chemicals, perfumes, drugs and pharmaceuticals. The oxidation products of ethyl benzene are important precursors for a wide range of pharmaceuticals and synthetic materials. Acetophenone and 1-phenylethanol are two oxidation products of ethyl benzene which are the precursors of optically active alcohol, benzalacetophanones, hydrazones and so on. However, the oxidations of alkyl substituted benzenes have been remaining a challenging task. This is because of the limitations of an appropriate catalyst and requirement of corrosive chemical treatments (potassium permanganate/dichromate and ammonium cerium nitrate) which are hazardous and environmentally unfriendly. The current industrial practice in the oxidation of ethyl benzene unfortunately involves high temperature thermal autoxidation in the absence of catalysts. Although few catalysts have been tested for the oxidation of ethyl benzene, many of them found to be inefficient. For example, cobalt (II) oxide-immobilized on mesoporous silica (Co/SBA-15) was used to catalyze oxidation of alkyl benzene at high temperature (125-150°C) but only 70% conversion was obtained after prolong treatment at 150°C. Additionally, the catalyst formed mixed uncontrolled oxidation products like 1-phenylethyl hydro peroxide, benzoic acid, acetophenone and phenyl ethanol. Carbon/silica/metal oxide supported nanoporous gold is a promising green catalyst for heterogenous molecular transformation. This is because of their three dimensional open pore network structures, high surface to volume ratio, high reusability, distinct optolectronic and physio-chemical properties. Mesoporous carbon/silica/metal oxide thin film supports provide increase dispersion of metal nanocatalysts and facilitate transport of molecules, ions or electrons through the nanopores/nanochannels, enhancing product yields with minimum cost and time. This paper has reviewed various gold-skeleton green catalysts and their preparation and mechanistic schemes for the selective oxidation of alkyl substituted benzenes.


Sign in / Sign up

Export Citation Format

Share Document