MicroRNA (miR)-429 Promotes Inflammatory Injury by Targeting Kruppel-like Factor 4 (KLF4) in Neonatal Pneumonia

2020 ◽  
Vol 17 (1) ◽  
pp. 102-109
Author(s):  
Lan Zhang ◽  
HuanLi Yan ◽  
Huiping Wang ◽  
Li Wang ◽  
Boling Bai ◽  
...  

Background: Neonatal pneumonia is a common disease in the neonatal period with a high incidence and death. This study aimed to investigate the molecular mechanism and effect of microRNA (miR)-429 in neonatal pneumonia. Methods: The peripheral blood was collected from neonatal pneumonia and healthy patients, respectively. Human lung fibroblast WI-38 cells were treated with lipopolysaccharide (LPS) to establish neonatal pneumonia cell model. Then, the miR-429 expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR). In addition, the relationship between miR- 429 and kruppel-like factor 4 (KLF4) was confirmed by dual luciferase reporter assay. Cell viability, the level of interleukin 6 (IL-6), IL-1β and tumor necrosis factor α (TNF-α) and apoptosis were measured by Cell Counting Kit-8 (CCK-8), enzyme linked immunosorbent assay (ELISA) and flow cytometry. Meanwhile, apoptosis and nuclear factor kappa-B (NF-κB) pathway related proteins expression were analyzed by western blot. Results: MiR-429 expression level was increased in neonatal peripheral blood and LPS-stimulated WI-38 cells. Then, miR-429 overexpression increased apoptosis, the level of IL-6, IL-1β, TNF-α, Bax and cleaved caspase-3, while reduced cell viability in LPS-stimulated WI-38 cells. Besides, KLF4 was identified as the target gene of miR-429, and reversed the changes caused by miR-429 overexpression. Finally, miR-429 suppressor down-regulated p-NF-κB level in LPS-stimulated cells and KLF4 knockdown reversed these reductions. Conclusion: MiR-429 promotes inflammatory injury, apoptosis and activates the NF-κB signaling pathway by targeting KLF4 in neonatal pneumonia, and then these results provide evidence for clinical diagnosis and treatment for neonatal pneumonia.

2021 ◽  
Vol 16 (1) ◽  
pp. 255-265
Author(s):  
Kunpeng Zhang ◽  
Xiaoyu Zhang

Abstract Background Acute pancreatitis (AP) is a common inflammatory disorder. MicroRNAs play crucial roles in the pathogenesis of AP. In this article, we explored the detailed role and molecular mechanisms of miR-146b-3p in AP progression. Methods The rat AR42J cells were treated with cerulein to establish the AP model in vitro. The miR-146b-3p and Annexin A2 (Anxa2) mRNA levels were assessed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Cell viability and apoptosis were tested using the Cell Counting Kit-8 (CCK-8) and flow cytometry assays, respectively. Caspase-3 activity and the production of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunosorbent assay and qRT-PCR. Targeted interaction between miR-146b-3p and Anxa2 was verified by the dual-luciferase reporter and RNA immunoprecipitation assays. Western blot analysis was performed to detect the expression of Anxa2 protein. Results Our data revealed that miR-146b-3p was significantly downregulated in AP samples. The enforced expression of miR-146b-3p alleviated cerulein-induced injury in AR42J cells, as evidenced by the promotion in cell viability and the repression in cell apoptosis, as well as the reduction in IL-1β, IL-6, and TNF-α production. Anxa2 was directly targeted and inhibited by miR-146b-3p. Moreover, the alleviative effect of miR-146b-3p overexpression on cerulein-induced AR42J cell injury was mediated by Anxa2. Conclusions The current work had led to the identification of miR-146b-3p overexpression that protected against cerulein-induced injury in AR42J cells at least in part by targeting Anxa2, revealing a promising target for AP diagnosis and treatment.


Pharmacology ◽  
2019 ◽  
Vol 105 (1-2) ◽  
pp. 90-101
Author(s):  
Biwang Liu ◽  
Huan Zhao ◽  
Yonghui Wang ◽  
Huizhong Zhang ◽  
Yanmiao Ma

Background: Astragaloside IV has shown its promising effect on acute respiratory distress syndrome (ARDS). Objectives: We aim to explore whether astragaloside IV is effective for ARDS treatment in a lipopolysaccharides (LPS)-induced cell model and whether autophagy is involved in the therapeutic function of astragaloside IV. Methods: MLE-12 cells were induced by LPS to construct an ARDS model in vitro. Cell viability was estimated by cell counting kit-8 and cell apoptosis by flow cytometry. Lactate dehydrogenase (LDH), malondialdehyde (MDA) and superoxide dismutase (SOD) levels were measured by enzyme-linked immunosorbent assay kit. The expression of tumour necrosis factor (TNF)-α, interleukin (IL)-6, zonula occludens (ZO)-1, Beclin-1 and autophagy-related (atg) 5 mRNA was evaluated by quantitative PCR, and the expression of ZO-1, microtubule-associated proteins 1A/1B light chain 3B (LC3B) I and, LC3B II protein by Western blot. Results: LPS effectively inhibited cell viability and LC3B I expression and enhanced LC3B II, Beclin-1 and atg5 expressions in MLE-12 cells. In LPS-induced ARDS cell model, astragaloside IV up-regulated cell viability, SOD activity and ZO-1 and LC3B I expressions but down-regulated cell apoptosis, TNF-α, IL-6, LC3B II, Beclin-1 and atg5 expressions and LDH and MDA levels. 3-methyladenine promoted cell viability and ZO-1 expression, down-regulated Beclin-1 and atg5 expression, while Rapamycin (Rap) had an opposite effect. Astragaloside IV suppressed cell viability and ZO-1 expression after the Rap treatment. Conclusions: Astragaloside IV might suppress autophagy initiation directly or indirectly through suppressing the oxidative stress and inflammatory response, which further enhances the cell viability and tight junction and reduces apoptosis in LPS-stimulated pulmonary endothelial ARDS cell model, thus exerting its therapeutic function in ARDS.


2019 ◽  
Vol 25 (7) ◽  
pp. 433-443
Author(s):  
Lin-Lin Feng ◽  
Wei-Na Xin ◽  
Xiu-Li Tian

To investigate the role of miR-146 and its possible relationship with MALAT1 in LPS-induced inflammation in human microvascular endothelial cells (HMECs), HMEC-1 cells were treated with LPS to construct an inflammatory injury cell model, and the cell viability, TNF-α and IL-6 secretion and the expression levels of VCAM-1, SELE and ICAM-1 were analysed as markers of inflammatory injury. The regulation mechanisms of miR-146 interacted with MALAT1 and the downstream NF-κB signalling were also verified by dual-luciferase assay and knockdown technology. LPS significantly decreased the cell viability, increased levels of VCAM-1, SELE and ICAM-1 and also up-regulated miR-146a/b, TNF-α and IL-6 in a dose-dependent manner. Over-expression of miR-146a resulted in down-regulation of TNF-α and IL-6, as well as VCAM-1, SELE and ICAM-1, while inhibition of miR-146a led to opposite results. The dual-luciferase reporter assay showed both miR-146a and miR-146b directly targeted and negatively regulated the expression of MALAT1. Silencing of MALAT1 suppressed LPS-induced NF-κB activation and TNF-α and IL-6 secretion, reducing the cell inflammatory injury, but these changes were reversed after combined treatment with miR-146a inhibitor. Taken together, we demonstrate that miR-146 protects HMECs against inflammatory injury by inhibiting NF-κB activation. This process is modulated by MALAT1.


2021 ◽  
Vol 16 (1) ◽  
pp. 108-127
Author(s):  
Jiahui Xu ◽  
Honggui Li ◽  
Ying Lv ◽  
Chang Zhang ◽  
Yiting Chen ◽  
...  

Abstract Background Emerging evidence shows that long noncoding RNA (lncRNA) has been a novel insight in various diseases, including pneumonia. Even though lncRNA X-inactive-specific transcript (XIST) is well studied, its role in pneumonia remains to be largely unrevealed. Methods Expression of XIST, miRNA-30b-5p (miR-30b-5p), and CC chemokine ligand 16 (CCL16) was detected using reverse transcriptase quantitative polymerase chain reaction and western blotting; their interaction was confirmed by dual-luciferase reporter assay. Apoptosis, inflammation, and toll-like receptor 4 (TLR4)/NF-κB signaling pathway were measured using methyl thiazolyl tetrazolium assay, flow cytometry, western blotting, and enzyme-linked immunosorbent assay. Results Lipopolysaccharide (LPS) stimulation decreased cell viability and B cell lymphoma (Bcl)-2 expression, and increased cell apoptosis rate and expression of Bcl-2-associated X protein (Bax), cleaved-caspase-3, interleukin (IL)-6, IL-1β, and tumor necrosis factor α (TNF-α) in WI-38 cells. Expression of XIST and CCL16 was upregulated in the serum of patients with pneumonia and LPS-induced WI-38 cells, respectively; silencing XIST and CCL16 could suppress LPS-induced apoptosis and inflammation in WI-38 cells, and this protection was abolished by miR-30b-5p downregulation. Moreover, XIST and CCL16 could physically bind to miR-30b-5p, and XIST regulated CCL16 expression via sponging miR-30b-5p. TLR4 and phosphorylated P65 (p-P65) and p-IκB-α were highly induced by LPS treatment, and this upregulation was diminished by blocking XIST, accompanied with CCL16 downregulation and miR-30b-5p upregulation. Conclusions Silencing XIST could alleviate LPS-induced inflammatory injury in human lung fibroblast WI-38 cells through modulating miR-30b-5p/CCL16 axis and inhibiting TLR4/NF-κB signaling pathway.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Zhenye Guo ◽  
Huan Wang ◽  
Feng Zhao ◽  
Min Liu ◽  
Feida Wang ◽  
...  

Abstract Background Circular RNAs (circRNAs) can act as vital players in osteoarthritis (OA). However, the roles of circRNAs in OA remain obscure. Herein, we explored the roles of exosomal circRNA bromodomain and WD repeat domain containing 1(circ-BRWD1) in OA pathology. Methods In vitro model of OA was constructed by treating CHON-001 cells with interleukin-1β (IL-1β). Quantitative real-time polymerase chain reaction (qRT-PCR) assay was used for circ-BRWD1, BRWD, miR-1277, and TNF receptor-associated factor 6 (TRAF6) levels. RNase R assay was conducted for the feature of circ-BRWD1. Transmission electron microscopy (TEM) was employed to analyze the morphology of exosomes. Western blot assay was performed for protein levels. Cell Counting Kit-8 (CCK-8) assay, flow cytometry analysis, and 5-Ethynyl-2′-deoxyuridine (EDU) assay were adopted for cell viability, apoptosis, and proliferation, respectively. Enzyme-linked immunosorbent assay (ELISA) was carried out for the concentrations of interleukin-6 (IL-6) and interleukin-8 (IL-8). Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to analyze the interaction between miR-1277 and circ-BRWD1 or TRAF6. Results Circ-BRWD1 was increased in OA cartilage tissues, IL-1β-treated CHON-001 cells, and the exosomes derived from IL-1β-treated CHON-001 cells. Exosome treatment elevated circ-BRWD1 level, while exosome blocker reduced circ-BRWD1 level in IL-1β-treated CHON-001 cells. Silencing of circ-BRWD1 promoted cell viability and proliferation and repressed apoptosis, inflammation, and extracellular matrix (ECM) degradation in IL-1β-stimulated CHON-001 cells. For mechanism analysis, circ-BRWD1 could serve as the sponge for miR-1277 to positively regulate TRAF6 expression. Moreover, miR-1277 inhibition ameliorated the effects of circ-BRWD1 knockdown on IL-1β-mediated CHON-001 cell damage. Additionally, miR-1277 overexpression relieved IL-1β-induced CHON-001 cell injury, while TRAF6 elevation restored the impact. Conclusion Exosomal circ-BRWD1 promoted IL-1β-induced CHON-001 cell progression by regulating miR-1277/TRAF6 axis.


Nephron ◽  
2021 ◽  
pp. 1-12
Author(s):  
Jianghong Cao ◽  
Dongwu Shi ◽  
Lili Zhu ◽  
Lu Song

<b><i>Background:</i></b> We intended to investigate the function of circular RNA RasGEF domain family member 1B (circ_RASGEF1B) in lipopolysaccharide (LPS)-induced septic acute kidney injury (AKI) cell model and its associated mechanism. <b><i>Methods:</i></b> TCMK-1 cells were exposed to 10 μg/mL LPS for 24 h to establish a septic AKI cell model. Mice were intraperitoneally injected with 10 mg/kg LPS to establish a septic AKI mice model. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were used to measure RNA and protein expression, respectively. Cell viability and apoptosis were assessed by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry. Cell inflammatory response was analyzed using enzyme-linked immunosorbent assay. Dual-luciferase reporter assay was conducted to confirm the predicted target relationship between microRNA-146a-5p (miR-146a-5p) and circ_RASGEF1B or pyruvate dehydrogenase kinase 1 (Pdk1). <b><i>Results:</i></b> The circ_RASGEF1B level was upregulated in LPS-induced TCMK-1 cells and septic AKI mice models. LPS exposure reduced cell viability and promoted cell apoptosis and inflammatory response partly by upregulating circ_RASGEF1B. Circ_RASGEF1B bound to miR-146a-5p and miR-146a-5p interference partly overturned circ_RASGEF1B silencing-mediated effects in LPS-induced TCMK-1 cells. Pdk1 was a target of miR-146a-5p, and Pdk1 accumulation partly counteracted miR-146a-5p-induced influences in TCMK-1 cells upon LPS stimulation. <b><i>Conclusion:</i></b> Circ_RASGEF1B promoted LPS-induced apoptosis and inflammatory response in renal tubular epithelial cells partly by upregulating Pdk1 via acting as miR-146a-5p sponge.


2018 ◽  
Vol 49 (6) ◽  
pp. 2229-2239 ◽  
Author(s):  
Shujie Li ◽  
Ruijin Xie ◽  
Chengrui Jiang ◽  
Mei Liu

Background/Aims: Inflammatory skin diseases are the most common problems in dermatology. Schizandrin A (SchA) has been reported to have anti-inflammatory properties. Herein, we aimed to investigate the protective effects of SchA on lipopolysaccharide (LPS)-induced injury in keratinocyte HaCaT cells. Methods: Inflammation injury in HaCaT cells was induced by LPS treatment. Cell viability, apoptotic cell rate, and apoptosis-related proteins were analyzed by cell counting kit-8 (CCK-8) assay, Annexin V-(fluorescein isothiocyanate (FITC)/ Propidium Iodide (PI) double staining method, and western blot, respectively. The pro-inflammatory factors were analyzed by western blot and quantified by enzyme linked immunosorbent assay (ELISA). Expression of miR-127 in SchA-treated cells was analyzed by qRT-PCR. The effects of SchA on activations of p38MAPK/ERK and JNK pathways were analyzed by western blot. Results: SchA protected HaCaT cells from LPS-induced inflammation damage via promoting cell viability, suppressing apoptosis. Meanwhile, SchA inhibited IL-1β, IL-6, and TNF-α expression. miR-127 expression was up-regulated in LPS-treated HaCaT cells but down-regulated after SchA treatment. Overexpression of miR-127 inhibited cell growth and induced expression of IL-1β, IL-6 and TNF-α. Additionally, miR-127 overexpression impaired the protective effects of SchA, implying miR-127 might be correlated to the anti-inflammation property of SchA and also involved in inactivation of p38MAPK/ERK and JNK pathways by SchA. Conclusion: miR-127 is involved in the protective functions of SchA on LPS-induced inflammation injury in human keratinocyte cell HaCaT, which might inactivates of p38MAPK/ERK and JNK signaling pathways in HaCaT cells.


2020 ◽  
Author(s):  
Lin Xu ◽  
Qingying Song ◽  
Zhanghong Ouyang ◽  
Xiangyan Zhang ◽  
Cheng Zhang

Abstract Pneumonia accounts for approximately 15% mortalities in adolescents worldwide. MicroRNAs (miRNAs) regulate numerous diseases including pneumonia. miRNA and mRNA expression levels were detected by real time polymerase chain reaction (RT-qPCR). Protein expression levels were determined by enzyme-linked immunosorbent assay (ELISA) and western blot. The interaction between phosphatase and tensin homolog on chromosome ten (PTEN) and miR-103a-3p was explored by dual luciferase reporter assay. Cell viability and cell apoptosis were detected by cell Counting Kit-8 (CCK-8) and flow cytometry. Herein, we discovered that PTEN was decreased and miR-103a-3p was overexpressed in Ana-1 cells of in vitro pneumonia model. miR-103a-3p downregulated the expression levels of PTEN. AntagomiR-103a-3p reversed the increased cell apoptosis and decreased cell viability and inflammatory cytokine expression levels (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6) induced by LPS in Ana-1 cells by PTEN. AntagomiR-103a-3p inhibited the activation of PTEN/PI3K/AKT/NF-κB signaling pathway induced by LPS in Ana-1 cells. Taken together, our findings exhibited that miR-103a-3p attenuated LPS induced pneumonia by blocking the activation of PTEN/PI3K/AKT/NF-κB signaling pathway and the following cell apoptosis as well as release of proinflammatory cytokines, suggesting that miR-103a-3p might serve as a novel therapeutic target for the treatment of pneumonia.


2021 ◽  
Vol 13 (4) ◽  
pp. 44-53
Author(s):  
Jin Li ◽  
Fang Ren ◽  
Wenliang Yan ◽  
Hong Sang

Psoriasis is a common chronic, inflammatory skin disease possessing properties of inflammatory cell infiltration and excessive proliferation of keratinocytes, the occurrence and development of which remain fully elucidated. Therefore, the study was designed to determine the effects of kirenol (50, 100 and 200 μg/mL) on Cultured Human Keratinocytes (cells) (HaCaT) in vitro and reveal its molecular mechanism. The in vitro psoriasis model was established utilizing tumor necrosis factor-α (TNF-α)-stimulated HaCaT cells. Kirenol, a diterpenoid compound, was applied at different concentrations (50, 100 and 200 μg/mL) to HaCaT cells for 24 h. The Cell Counting Kit-8 (CCK-8) and thymidine monobromodeoxyuridine (BrdU) assays were used to assess cell viability and proliferation, followed by assessment of cell migration by Transwell assay. Subsequently, inflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA), and Western blot assay was used to evaluate expres-sions of p65, p-p65, IκBα and p-IκBα. Activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and malondialdehyde (MDA) contents were measured spectrophotometrically. The results demonstrated that TNF-α induced a significant increase in cell viability and inflammatory cytokines, including expressions of Interleukin (IL)-6, IL-8, IL-22 and IL-1β in HaCaT cells, which was dose-dependently inhibited by kirenol. Similarly, TNF-α-induced cell migration was also suppressed by kirenol treatment. Furthermore, TNF-α stimuli induced the upregulation of phosphorylation levels of p65 and IκBα as well as p-p65–p65 and p-IκBα–IκBα ratios, whereas kirenol significantly suppressed the activation of cellular nuclear factor-kappa B (NF-κB) signaling pathway. In addition, kirenol significantly decreased the level of MDA but increased the levels of SOD, CAT and GSH in a dose-dependent manner. These results proposed that kirenol could inhibit the proliferation, migration, expression of inflammatory factors, and oxidative stress in HaCaT cells via suppressing NF-κB signaling pathway.


2022 ◽  
Vol 16 (1) ◽  
Author(s):  
Bin Zhang ◽  
Juncheng Wang ◽  
Lei Du ◽  
Lufei Shao ◽  
Yourui Zou ◽  
...  

Abstract Background Although long non-coding RNA (lncRNA) NCK1-AS1 plays important roles in human cancer, its function in atherosclerosis (AS) remains unclear. Method The expression of NCK1-AS1 in AS blood samples was detected by qRT-PCR. Oxidized low-density lipoprotein (ox-LDL) was used to construct the AS cell model, and quantitative real-time polymerase chain reaction (qRT-PCR) assay was used to evaluate NCK1-AS1 level. Cell phenotypes including proliferation and apoptosis were assessed by Cell Counting Kit-8 (CCK-8) assay and flow cytometer, respectively. The malondialdehyde level was measured to evaluate oxidative stress. The expression of apoptosis-related proteins was evaluated by western blot. The expression of inflammatory cytokines (IL-1β, IL-6 and TNK-α) was measured by qRT-PCR and ELISA assays. The relationship among NCK1-AS1, miR-1197 and COX10 was determined by bioinformatic analysis and luciferase reporter assay. Results NCK1-AS1 was significantly upregulated in AS blood samples and ox-LDL stimulated vascular smooth muscle cells (VSMCs). Knockdown of NCK1-AS1 increased cell viability, reduced cell apoptosis and MDA level, and also inhibited the expression of inflammatory cytokines (IL-1β, IL-6 and TNK-α) in ox-LDL stimulated VSMCs. NCK1-AS1 could positively regulate COX10 expression by directly sponging miR-1197. Moreover, co-transfection of sh-NCK1-AS1 and miR-1197 inhibitor, or co-transfection of sh-NCK1-AS1 and pc-COX10 (COX10 overexpressing plasmid) obviously reduced cell viability, promoted cell apoptosis, and increased MDA level in VSMCs followed by ox-LDL treatment for 24 h compared to that in sh-NCK1-AS1 transfected VSMCs. Conclusion Our study revealed that knockdown of NCK1-AS1 attenuated the development of AS by regulating miR-1197/COX10 axis, suggesting that this lncRNA might be a potential therapeutic target for AS.


Sign in / Sign up

Export Citation Format

Share Document