Multiomics Investigation of Hypertension and White Matter Hyperintensity as a Source of Vascular Dementia or a Comorbidity to Alzheimer’s Disease

2021 ◽  
Vol 18 ◽  
Author(s):  
Gita A. Pathak ◽  
Robert C. Barbe ◽  
Nicole R. Phillips

Background: Age-related comorbidity is common and significantly increases the burden for the healthcare of the elderly. Alzheimer’s disease (AD) and hypertension are the two most prevalent age-related conditions and are highly comorbid. While hypertension is a risk factor for vascular dementia (VD), hypertension with AD (ADHyp+) is often characterized as probable vascular dementia. In the absence of imaging and other diagnostic tests, differentiating the two pathological states is difficult. Objective: Our goals are to (1) identify differences in CSF-based vascular dementia profiles, if any, between individuals who have AD only (ADHyp-), and individuals with ADHyp+ using CSF levels of amyloid β, tau and p-tau, and (2) compare genome-wide DNA profiles of ADHyp- and AD-Hyp+ with an unaffected control population. Methods: Genotype and clinical data were used to compare healthy controls to AD+/Hyp- vs AD+/Hyp+. We compared the CSF biomarkers followed by evaluating genome wide profiles in three groups, and mapped SNPs to genes based on position and lowest p-value. The significant genes were examined for co-expression and known disease networks. Results: We found no differences between Aβ, tau and p-tau levels between ADHyp- and AD- Hyp+. We found TOMM40 to be associated with ADHyp- as expected but not with ADHyp+. Inter- estingly, SLC9A3R2 polymorphism was associated with ADHyp+, and significant gene expression changes were observed for neighboring genes. Conclusion: Through this exploratory study using a novel cohort stratification design, we highlight the genetic differences in clinically similar phenotypes, indicating the utility of genetic profiling in aiding differential diagnosis of ADHyp+ and VD.

2021 ◽  
pp. 1-9
Author(s):  
Ira Driscoll ◽  
Yue Ma ◽  
Catherine L. Gallagher ◽  
Sterling C. Johnson ◽  
Sanjay Asthana ◽  
...  

Background: Identification of new genetic variants that modify Alzheimer’s disease (AD) risk will elucidate novel targets for curbing the disease progression or delaying symptom onset. Objective: To examine whether the functionally advantageous KLOTHO gene KL-VS variant attenuates age-related alteration in cerebrospinal fluid (CSF) biomarkers or cognitive function in middle-aged and older adults enriched for AD risk. Methods: Sample included non-demented adults (N = 225, mean age = 63±8, 68% women) from the Wisconsin Registry for Alzheimer’s Prevention and the Wisconsin Alzheimer’s Disease Research Center who were genotyped for KL-VS, underwent CSF sampling and had neuropsychological testing data available proximal to CSF draw. Covariate-adjusted multivariate regression examined relationships between age group (Younger versus Older; mean split at 63 years), AD biomarkers, and neuropsychological performance tapping memory and executive function, and whether these relationships differed between KL-VS non-carriers (KL-VSNC) and heterozygote (KL-VSHET). Results: In the pooled analyses, older age was associated with higher levels of total tau (tTau), phosphorylated tau (pTau), and their respective ratios to amyloid-β (Aβ)42 (ps ≤ 0.002), and with poorer performance on neuropsychological tests (ps ≤ 0.001). In the stratified analyses, KL-VSNC exhibited this age-related pattern of associations with CSF biomarkers (all ps ≤ 0.001), and memory and executive function (ps ≤ 0.003), which were attenuated in KL-VSHET (ps≥0.14). Conclusion: Worse memory and executive function, and higher tau burden with age were attenuated in carriers of a functionally advantageous KLOTHO variant. KL-VS heterozygosity seems to be protective against age-related cognitive and biomolecular alterations that confer risk for AD.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 900
Author(s):  
Sergey Shityakov ◽  
Kentaro Hayashi ◽  
Stefan Störk ◽  
Verena Scheper ◽  
Thomas Lenarz ◽  
...  

Alzheimer’s disease (AD), the most common cause of dementia in the elderly, is a neurodegenerative disorder associated with neurovascular dysfunction and cognitive decline. While the deposition of amyloid β peptide (Aβ) and the formation of neurofibrillary tangles (NFTs) are the pathological hallmarks of AD-affected brains, the majority of cases exhibits a combination of comorbidities that ultimately lead to multi-organ failure. Of particular interest, it can be demonstrated that Aβ pathology is present in the hearts of patients with AD, while the formation of NFT in the auditory system can be detected much earlier than the onset of symptoms. Progressive hearing impairment may beget social isolation and accelerate cognitive decline and increase the risk of developing dementia. The current review discusses the concept of a brain–ear–heart axis by which Aβ and NFT inhibition could be achieved through targeted supplementation of neurotrophic factors to the cochlea and the brain. Such amyloid inhibition might also indirectly affect amyloid accumulation in the heart, thus reducing the risk of developing AD-associated amyloid cardiomyopathy and cardiovascular disease.


2021 ◽  
pp. 1-13
Author(s):  
Jonathan D. Drake ◽  
Alison B. Chambers ◽  
Brian R. Ott ◽  
Lori A. Daiello ◽  

Background: Cerebrovascular dysfunction confers risk for functional decline in Alzheimer’s disease (AD), yet the clinical interplay of these two pathogenic processes is not well understood. Objective: We utilized Alzheimer’s Disease Neuroimaging Initiative (ADNI) data to examine associations between peripherally derived soluble cell adhesion molecules (CAMs) and clinical diagnostic indicators of AD. Methods: Using generalized linear regression models, we examined cross-sectional relationships of soluble plasma vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-Selectin to baseline diagnosis and functional impairment (clinical dementia rating sum-of-boxes, CDR-SB) in the ADNI cohort (n = 112 AD, n = 396 mild cognitive impairment (MCI), n = 58 cognitively normal). We further analyzed associations of these biomarkers with brain-based AD biomarkers in a subset with available cerebrospinal fluid (CSF) data (n = 351). p-values derived from main effects and interaction terms from the linear regressions were used to assess the relationship between independent and dependent variables for significance (significance level was set at 0.05 a priori for all analysis). Results: Higher mean VCAM-1 (p = 0.0026) and ICAM-1 (p = 0.0189) levels were found in AD versus MCI groups; however, not in MCI versus cognitively normal groups. Only VCAM-1 was linked with CDR-SB scores (p = 0.0157), and APOE ɛ4 genotype modified this effect. We observed independent, additive associations when VCAM-1 and CSF amyloid-β (Aβ 42), total tau, phosphorylated tau (P-tau), or P-tau/Aβ 42 (all <  p = 0.01) were combined in a CDR-SB model; ICAM-1 showed a similar pattern, but to a lesser extent. Conclusion: Our findings indicate independent associations of plasma-based vascular biomarkers and CSF biomarkers with AD-related clinical impairment.


2021 ◽  
Vol 11 (2) ◽  
pp. 215
Author(s):  
Donovan A. McGrowder ◽  
Fabian Miller ◽  
Kurt Vaz ◽  
Chukwuemeka Nwokocha ◽  
Cameil Wilson-Clarke ◽  
...  

Alzheimer’s disease is a progressive, clinically heterogeneous, and particularly complex neurodegenerative disease characterized by a decline in cognition. Over the last two decades, there has been significant growth in the investigation of cerebrospinal fluid (CSF) biomarkers for Alzheimer’s disease. This review presents current evidence from many clinical neurochemical studies, with findings that attest to the efficacy of existing core CSF biomarkers such as total tau, phosphorylated tau, and amyloid-β (Aβ42), which diagnose Alzheimer’s disease in the early and dementia stages of the disorder. The heterogeneity of the pathophysiology of the late-onset disease warrants the growth of the Alzheimer’s disease CSF biomarker toolbox; more biomarkers showing other aspects of the disease mechanism are needed. This review focuses on new biomarkers that track Alzheimer’s disease pathology, such as those that assess neuronal injury (VILIP-1 and neurofilament light), neuroinflammation (sTREM2, YKL-40, osteopontin, GFAP, progranulin, and MCP-1), synaptic dysfunction (SNAP-25 and GAP-43), vascular dysregulation (hFABP), as well as CSF α-synuclein levels and TDP-43 pathology. Some of these biomarkers are promising candidates as they are specific and predict future rates of cognitive decline. Findings from the combinations of subclasses of new Alzheimer’s disease biomarkers that improve their diagnostic efficacy in detecting associated pathological changes are also presented.


Author(s):  
Claudio Liguori ◽  
Mariangela Pierantozzi ◽  
Agostino Chiaravalloti ◽  
Giulia M. Sancesario ◽  
Nicola B. Mercuri ◽  
...  

2013 ◽  
Vol 7 (2) ◽  
pp. 190-196 ◽  
Author(s):  
Luis Felipe José Ravic de Miranda ◽  
Marilourdes do Amaral Barbosa ◽  
Patrícia Regina Henrique Peles ◽  
Patrícia Hilar Pôças ◽  
Pedro Augusto Lopes Tito ◽  
...  

ABSTRACT Life expectancy in Brazil has increased markedly over the last 30 years. Hence, age-related disorders, such as Alzheimer's disease (AD), warrant special attention due to their high prevalence in the elderly. Pharmacologic treatment of AD is based on cholinesterase inhibitors (ChEI) and memantine, leading to modest clinical benefits both in the short and long-term. However, clinical response is heterogeneous and needs further investigation. Objective: To investigate the rate of response to ChEI in AD after three months of treatment. Methods: Patients with mild or moderate dementia due to probable AD or to AD associated with cerebrovascular disease were included in the study. The subjects were assessed at baseline and again after three months of ChEI treatment. Subjects were submitted to the Mini-Mental State Examination (MMSE), Mattis Dementia Rating Scale, Katz Basic Activities of Daily Living, Pfeffer Functional Activities Questionnaire, Neuropsychiatric Inventory and Cornell Scale for Depression in Dementia. Good response was defined by a gain of ≥2 points on the MMSE after three months of treatment in relation to baseline. Results: Seventy-one patients, 66 (93%) with probable AD and five (7%) with AD associated with cerebrovascular disease, were evaluated. The good response rate at three months was 31.0%, being 37.2% and 21.4% in mild and moderate dementia, respectively. There were no significant differences on most tests, except for improvement in hallucinations, agitation and dysphoria in moderate dementia patients. Conclusion: The rate of good clinical response to ChEI was higher than usually reported. Specific behavioral features significantly improved in the subgroup of moderate dementia.


2021 ◽  
Vol 15 ◽  
Author(s):  
Cátia R. Lopes ◽  
Rodrigo A. Cunha ◽  
Paula Agostinho

Astrocytes, through their numerous processes, establish a bidirectional communication with neurons that is crucial to regulate synaptic plasticity, the purported neurophysiological basis of memory. This evidence contributed to change the classic “neurocentric” view of Alzheimer’s disease (AD), being astrocytes increasingly considered a key player in this neurodegenerative disease. AD, the most common form of dementia in the elderly, is characterized by a deterioration of memory and of other cognitive functions. Although, early cognitive deficits have been associated with synaptic loss and dysfunction caused by amyloid-β peptides (Aβ), accumulating evidences support a role of astrocytes in AD. Astrocyte atrophy and reactivity occurring at early and later stages of AD, respectively, involve morphological alterations that translate into functional changes. However, the main signals responsible for astrocytic alterations in AD and their impact on synaptic function remain to be defined. One possible candidate is adenosine, which can be formed upon extracellular catabolism of ATP released by astrocytes. Adenosine can act as a homeostatic modulator and also as a neuromodulator at the synaptic level, through the activation of adenosine receptors, mainly of A1R and A2AR subtypes. These receptors are also present in astrocytes, being particularly relevant in pathological conditions, to control the morphofunctional responses of astrocytes. Here, we will focus on the role of A2AR, since they are particularly associated with neurodegeneration and also with memory processes. Furthermore, A2AR levels are increased in the AD brain, namely in astrocytes where they can control key astrocytic functions. Thus, unveiling the role of A2AR in astrocytes function might shed light on novel therapeutic strategies for AD.


2021 ◽  
pp. 1-14
Author(s):  
Stefanie A.G. Black ◽  
Anastasiia A. Stepanchuk ◽  
George W. Templeton ◽  
Yda Hernandez ◽  
Tomoko Ota ◽  
...  

Background: Toxic amyloid-β (Aβ) peptides aggregate into higher molecular weight assemblies and accumulate not only in the extracellular space, but also in the walls of blood vessels in the brain, increasing their permeability, and promoting immune cell migration and activation. Given the prominent role of the immune system, phagocytic blood cells may contact pathological brain materials. Objective: To develop a novel method for early Alzheimer’s disease (AD) detection, we used blood leukocytes, that could act as “sentinels” after trafficking through the brain microvasculature, to detect pathological amyloid by labelling with a conformationally-sensitive fluorescent amyloid probe and imaging with confocal spectral microscopy. Methods: Formalin-fixed peripheral blood mononuclear cells (PBMCs) from cognitively healthy control (HC) subjects, mild cognitive impairment (MCI) and AD patients were stained with the fluorescent amyloid probe K114, and imaged. Results were validated against cerebrospinal fluid (CSF) biomarkers and clinical diagnosis. Results: K114-labeled leukocytes exhibited distinctive fluorescent spectral signatures in MCI/AD subjects. Comparing subjects with single CSF biomarker-positive AD/MCI to negative controls, our technique yielded modest AUCs, which improved to the 0.90 range when only MCI subjects were included in order to measure performance in an early disease state. Combining CSF Aβ 42 and t-Tau metrics further improved the AUC to 0.93. Conclusion: Our method holds promise for sensitive detection of AD-related protein misfolding in circulating leukocytes, particularly in the early stages of disease.


2012 ◽  
Vol 18 (2) ◽  
pp. 191-199 ◽  
Author(s):  
Erika J. Laukka ◽  
Stuart W.S. MacDonald ◽  
Laura Fratiglioni ◽  
Lars Bäckman

AbstractWe investigated differences between Alzheimer's disease (AD) and vascular dementia (VaD) from the appearance of the first cognitive symptoms, focusing on both time of onset and rate of accelerated decline for different cognitive functions before dementia diagnosis. Data from a longitudinal population-based study were used, including 914 participants (mean age = 82.0 years, SD = 5.0) tested with a cognitive battery (word recall and recognition, Block Design, category fluency, clock reading) on up to four occasions spanning 10 years. We fit a series of linear mixed effects models with a change point to the cognitive data, contrasting each dementia group to a control group. Significant age-related decline was observed for all five cognitive tasks. Relative to time of diagnosis, the preclinical AD persons deviated from the normal aging curve earlier (up to 9 years) compared to the preclinical VaD persons (up to 6 years). However, once the preclinical VaD persons started to decline, they deteriorated at a faster rate than the preclinical AD persons. The results have important implications for identifying the two dementia disorders at an early stage and for selecting cognitive tasks to evaluate treatment effects for persons at risk of developing AD and VaD. (JINS, 2012, 18, 191–199)


Sign in / Sign up

Export Citation Format

Share Document