The Molecular Diversity Scope of Urazole in the Synthesis of Organic Compounds

2019 ◽  
Vol 16 (7) ◽  
pp. 953-967 ◽  
Author(s):  
Ghodsi M. Ziarani ◽  
Fatemeh Mohajer ◽  
Razieh Moradi ◽  
Parisa Mofatehnia

Background: As a matter of fact, nitrogen as a hetero atom among other atoms has had an important role in active biological compounds. Since heterocyclic molecules with nitrogen are highly demanded due to biological properties, 4-phenylurazole as a compound containing nitrogen might be important in the multicomponent reaction used in agrochemicals, and pharmaceuticals. Considering the case of fused derivatives “pyrazolourazoles” which are highly applicable because of their application for analgesic, antibacterial, anti-inflammatory and antidiabetic activities as HSP-72 induction inhibitors (I and III) and novel microtubule assembly inhibitors. It should be mentioned that spiro-pyrazole also has biological activities like cytotoxic, antimicrobial, anticonvulsant, antifungal, anticancer, anti-inflammatory, and cardiotonic activities. Objective: Urazole has been used in many heterocyclic compounds which are valuable in organic syntheses. This review disclosed the advances in the use of urazole as the starting material in the synthesis of various biologically active molecules from 2006 to 2019. Conclusion: Compounds of urazole (1,2,4-triazolidine-3,5-dione) are the most important molecules which are highly active from the biological perspective in the pharmaceuticals as well as polymers. In summary, many protocols for preparations of the urazole derivatives from various substrates in multi-component reactions have been reported from different aromatic and aliphatic groups which have had carbonyl groups in their structures. It is noted that several catalysts have been synthesized to afford applicable molecules with urazole scaffolds. In some papers, being environmentally friendly, short time reactions and high yields are highlighted in the protocols. There is a room to synthesize new catalysts and perform new reactions by manipulating urazole to produce biologically active compounds, even producing chiral urazole component as many groups of chiral urazole compounds are important from biological perspective.

Author(s):  
Paweł Bakun ◽  
Beata Czarczynska-Goslinska ◽  
Tomasz Goslinski ◽  
Sebastian Lijewski

AbstractAzulene is an aromatic hydrocarbon that possesses a unique chemical structure and interesting biological properties. Azulene derivatives, including guaiazulene or chamazulene, occur in nature as components of many plants and mushrooms, such as Matricaria chamomilla, Artemisia absinthium, Achillea millefolium, and Lactarius indigo. Due to physicochemical properties, azulene and its derivatives have found many potential applications in technology, especially in optoelectronic devices. In medicine, the ingredients of these plants have been widely used for hundreds of years in antiallergic, antibacterial, and anti-inflammatory therapies. Herein, the applications of azulene, its derivatives and their conjugates with biologically active compounds are presented. The potential use of these compounds concerns various areas of medicine, including anti-inflammatory with peptic ulcers, antineoplastic with leukemia, antidiabetes, antiretroviral with HIV-1, antimicrobial, including antimicrobial photodynamic therapy, and antifungal.


2019 ◽  
Author(s):  
Chem Int

A series of heterocyclic compounds incorporating pyridazine moiety were for diverse biological activities. Pyridazines and pyridazinones derivatives showed wide spectrum of biological activities such as vasodialator, cardiotonic, anticonvulsant, antihypertensive, antimicrobial, anti-inflammatory, analgesic, anti-feedant, herbicidal, and various other biological, agrochemical and industrial chemical activities. The results illustrated that the synthesized pyridazine/pyridazine compounds have diverse and significant biological activities. Mechanistic insights into the biological properties of pyridazinone derivatives and various synthetic techniques used for their synthesis are also described.


2019 ◽  
Vol 23 (8) ◽  
pp. 860-900 ◽  
Author(s):  
Chander P. Kaushik ◽  
Jyoti Sangwan ◽  
Raj Luxmi ◽  
Krishan Kumar ◽  
Ashima Pahwa

N-Heterocyclic compounds like 1,2,3-triazoles serve as a key scaffolds among organic compounds having diverse applications in the field of drug discovery, bioconjugation, material science, liquid crystals, pharmaceutical chemistry and solid phase organic synthesis. Various drugs containing 1,2,3-triazole ring which are commonly available in market includes Rufinamide, Cefatrizine, Tazobactam etc., Stability to acidic/basic hydrolysis along with significant dipole moment support triazole moiety for appreciable participation in hydrogen bonding and dipole-dipole interactions with biological targets. Huisgen 1,3-dipolar azide-alkyne cycloaddition culminate into a mixture of 1,4 and 1,5- disubstituted 1,2,3-triazoles. In 2001, Sharpless and Meldal came across with a copper(I) catalyzed regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles by cycloaddition between azides and terminal alkynes. This azide-alkyne cycloaddition has been labelled as a one of the important key click reaction. Click synthesis describes chemical reactions that are simple to perform, gives high selectivity, wide in scope, fast reaction rate and high yields. Click reactions are not single specific reaction, but serve as a pathway for construction of simple to complex molecules from a variety of starting materials. In the last few decades, 1,2,3-triazoles attracted attention of researchers all over the world because of their broad spectrum of biological activities. Keeping in view the biological importance of 1,2,3-triazole, in this review we focus on the various synthetic routes for the syntheisis of 1,4-disubstituted 1,2,3-triazoles. This review involves various synthetic protocols which involves copper and non-copper catalysts, different solvents as well as substrates. It will boost synthetic chemists to explore new pathway for the development of newer biologically active 1,2,3-triazoles.


2020 ◽  
Vol 24 (14) ◽  
pp. 1555-1581
Author(s):  
Garima Tripathi ◽  
Anil Kumar Singh ◽  
Abhijeet Kumar

Among the major class of heterocycles, the N-heterocycles, such as pyrazoles, are scaffolds of vast medicinal values. Various drugs and other biologically active molecules are known to contain these N-heterocycles as core motifs. Specifically, arylpyrazoles have exhibited a diverse range of biological activities, including anti-inflammatory, anticancerous, antimicrobial and various others. For instance, arylpyrazoles are present as core moieties in various insecticides, fungicides and drugs such as Celebrex and Trocoxil. The present review will be highlighting the significant therapeutic importance of pyrazole derivatives developed in the last few years.


2020 ◽  
Vol 17 (2) ◽  
pp. 82-90 ◽  
Author(s):  
Ghodsi Mohammadi Ziarani ◽  
Fatemeh Mohajer ◽  
Zohreh kheilkordi

Background: Natural products have been received attention due to their importance in human life as those are biologically active. In this review, there are some reports through different methods related to the synthesis of the indolizidine 195B which was extracted from poisonous frog; however, due to respect nature, the synthesis of natural compounds such as indolizidine has been attracted much attention among scientists and researchers. Objective: This review discloses the procedures and methods to provide indolizidine 195B from 1989 to 2018 due to their importance as a natural product. Conclusion: There are several methods to give rise to the indolizidine 195B as a natural product that is highly active from the biological perspective in pharmaceutical chemistry. In summary, many protocols for the preparations of indolizidine 195B from various substrates, several reagents, and conditions have been reported from different aromatic and aliphatic.


2021 ◽  
Vol 22 (5) ◽  
pp. 2712
Author(s):  
Anne Hanneken ◽  
Maluz Mercado ◽  
Pamela Maher

The identification of soluble fibroblast growth factor (FGF) receptors in blood and the extracellular matrix has led to the prediction that these proteins modulate the diverse biological activities of the FGF family of ligands in vivo. A recent structural characterization of the soluble FGF receptors revealed that they are primarily generated by proteolytic cleavage of the FGFR-1 ectodomain. Efforts to examine their biological properties are now focused on understanding the functional consequences of FGFR-1 ectodomain shedding and how the shedding event is regulated. We have purified an FGFR-1 ectodomain that is constitutively cleaved from the full-length FGFR-1(IIIc) receptor and released into conditioned media. This shed receptor binds FGF-2; inhibits FGF-2-induced cellular proliferation; and competes with high affinity, cell surface FGF receptors for ligand binding. FGFR-1 ectodomain shedding downregulates the number of high affinity receptors from the cell surface. The shedding mechanism is regulated by ligand binding and by activators of PKC, and the two signaling pathways appear to be independent of each other. Deletions and substitutions at the proposed cleavage site of FGFR-1 do not prevent ectodomain shedding. Broad spectrum inhibitors of matrix metalloproteases decrease FGFR-1 ectodomain shedding, suggesting that the enzyme responsible for constitutive, ligand-activated, and protein kinase C-activated shedding is a matrix metalloprotease. In summary, shedding of the FGFR-1 ectodomain is a highly regulated event, sharing many features with a common system that governs the release of diverse membrane proteins from the cell surface. Most importantly, the FGFR ectodomains are biologically active after shedding and are capable of functioning as inhibitors of FGF-2.


Author(s):  
Yogita Chowdhary

Aegle marmelos (Bilva) is being used in Ayurveda for the treatment of several inflammatory disorders. The plant is a member of a fixed dose combination of Dashamoola in Ayurveda. However, the usage of roots/root bark or stems is associated with sustainability concerns. Bael (Aegle marmelos (L.) Corr.) is an important medicinal plant of India. Leaves, fruits, stem and roots of A. marmelos have been used in ethno medicine to exploit its' medicinal properties including astringent, antidiarrheal antidysenteric, demulcent, antipyretic and anti-inflammatory activities. Compounds purified from bael have been proven to be biologically active against several major diseases including cancer, diabetes and cardiovascular diseases. Preclinical studies indicate the therapeutic potential of crude extracts of A. marmelos in the treatment of many microbial diseases, diabetes and gastric ulcer. This review covers the biological activities of some isolated chemical constituents of A. marmelos and preclinical studies on some crude extracts and pure compounds to explore novel bioactive compounds for therapeutic application. Aegle marmelos (L.) is a seasonal fruit that contains significant amounts of bioactives like, phenolic acids (gallic acids, 2,3-dihydroxy benzoic acid, chlorogenic acid, p-coumaric acid, vanillic acid), flavonoid (rutin), organic acids (oxalic acid, tartaric acid, malic acid, lactic acid, acetic acid, citric acid, propionic acid, succinic acid, fumaric acid), vitamin C, vitamin B group (thiamine, niacin, pyridoxine, pantothenic acid, biotin, cobalamins, riboflavin), tocopherols (α-tocopherol, β-tocopherol, γ-tocopherol, δ-tocopherol), carotenes (α-carotene, β-carotene, γ-carotene, δ-carotene) and also rich in essential minerals (potassium, calcium, phosphorus, sodium, iron, copper, manganese). Hence the use of aegle plays important role as anti-inflammatory.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Suyeon Kim

Chitosan is obtained from alkaline deacetylation of chitin, and acetamide groups are transformed into primary amino groups during the deacetylation. The diverse biological activities of chitosan and its derivatives are extensively studied that allows to widening the application fields in various sectors especially in biomedical science. The biological properties of chitosan are strongly depending on the solubility in water and other solvents. Deacetylation degree (DDA) and molecular weight (MW) are the most decisive parameters on the bioactivities since the primary amino groups are the key functional groups of chitosan where permits to interact with other molecules. Higher DDA and lower MW of chitosan and chitosan derivatives demonstrated higher antimicrobial, antioxidant, and anticancer capacities. Therefore, the chitosan oligosaccharides (COS) with a low polymerization degree are receiving a great attention in medical and pharmaceutical applications as they have higher water solubility and lower viscosity than chitosan. In this review articles, the antimicrobial, antioxidant, anticancer, anti-inflammatory activities of chitosan and its derivatives are highlighted. The influences of physicochemical parameters of chitosan like DDA and MW on bioactivities are also described.


Química Nova ◽  
2021 ◽  
Author(s):  
Dartagnan Ferreira ◽  
Valter Murie ◽  
Thiago Santos ◽  
Paulo Vieira ◽  
Giuliano Clososki

RECENT ADVANCES IN SELECTIVE FUNCTIONALIZATION OF QUINOLINES. Heterocyclic compounds form an important and extensive group of organic substances. Among nitrogenous heterocyclic molecules, quinolines stand out for exhibiting attractive chemical and biological properties. These substances can be used as ligands, sensors, luminescent and agrochemical materials. In addition, quinoline-containing compounds can exhibit a wide spectrum of pharmacological properties, allowing their use in several approved drugs nowadays. Due to its importance, the synthesis of molecules containing this nucleus becomes a point of interest for synthetic chemists. In this way, several methodologies have been recently developed to prepare quinoline derivatives with high structural diversity. Such chemical transformations allow the chemical modification of these rings with high selectivity and tolerance to diverse functional groups and these properties have been conveniently used in the preparation of biologically active molecules containing this unit. Herein, we present a review of the main methodologies employed in the selective functionalization of quinolines in the last twenty years. In this context, a brief introduction addressing general synthetic and medicinal aspects related to the functionalization positions of the quinoline ring is presented. Several methodologies used in the functionalization of this moiety are discussed, as well relevant synthetic applications, both in the preparation and functionalization of substances of biological interest.


Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 298 ◽  
Author(s):  
Jasmine Speranza ◽  
Natalizia Miceli ◽  
Maria Fernanda Taviano ◽  
Salvatore Ragusa ◽  
Inga Kwiecień ◽  
...  

Isatis tinctoria L. (Brassicaceae), which is commonly known as woad, is a species with an ancient and well-documented history as an indigo dye and medicinal plant. Currently, I. tinctoria is utilized more often as medicinal remedy and also as a cosmetic ingredient. In 2011, I. tinctoria root was accepted in the official European phytotherapy by introducing its monograph in the European Pharmacopoeia. The biological properties of raw material have been known from Traditional Chinese Medicine (TCM). Over recent decades, I. tinctoria has been investigated both from a phytochemical and a biological point of view. The modern in vitro and in vivo scientific studies proved anti-inflammatory, anti-tumour, antimicrobial, antiviral, analgesic, and antioxidant activities. The phytochemical composition of I. tinctoria has been thoroughly investigated and the plant was proven to contain many valuable biologically active compounds, including several alkaloids, among which tryptanthrin, indirubin, indolinone, phenolic compounds, and polysaccharides as well as glucosinolates, carotenoids, volatile constituents, and fatty acids. This article provides a general botanical and ethnobotanical overview that summarizes the up-to-date knowledge on the phytochemistry and biological properties of this valuable plant in order to support its therapeutic potential. Moreover, the biotechnological studies on I. tinctoria, which mainly focused on hairy root cultures for the enhanced production of flavonoids and alkaloids as well as on the establishment of shoot cultures and micropropagation protocols, were reviewed. They provide input for future research prospects.


Sign in / Sign up

Export Citation Format

Share Document