scholarly journals RECENTES AVANÇOS NA FUNCIONALIZAÇÃO SELETIVA DE QUINOLINAS

Química Nova ◽  
2021 ◽  
Author(s):  
Dartagnan Ferreira ◽  
Valter Murie ◽  
Thiago Santos ◽  
Paulo Vieira ◽  
Giuliano Clososki

RECENT ADVANCES IN SELECTIVE FUNCTIONALIZATION OF QUINOLINES. Heterocyclic compounds form an important and extensive group of organic substances. Among nitrogenous heterocyclic molecules, quinolines stand out for exhibiting attractive chemical and biological properties. These substances can be used as ligands, sensors, luminescent and agrochemical materials. In addition, quinoline-containing compounds can exhibit a wide spectrum of pharmacological properties, allowing their use in several approved drugs nowadays. Due to its importance, the synthesis of molecules containing this nucleus becomes a point of interest for synthetic chemists. In this way, several methodologies have been recently developed to prepare quinoline derivatives with high structural diversity. Such chemical transformations allow the chemical modification of these rings with high selectivity and tolerance to diverse functional groups and these properties have been conveniently used in the preparation of biologically active molecules containing this unit. Herein, we present a review of the main methodologies employed in the selective functionalization of quinolines in the last twenty years. In this context, a brief introduction addressing general synthetic and medicinal aspects related to the functionalization positions of the quinoline ring is presented. Several methodologies used in the functionalization of this moiety are discussed, as well relevant synthetic applications, both in the preparation and functionalization of substances of biological interest.

2019 ◽  
Vol 16 (7) ◽  
pp. 953-967 ◽  
Author(s):  
Ghodsi M. Ziarani ◽  
Fatemeh Mohajer ◽  
Razieh Moradi ◽  
Parisa Mofatehnia

Background: As a matter of fact, nitrogen as a hetero atom among other atoms has had an important role in active biological compounds. Since heterocyclic molecules with nitrogen are highly demanded due to biological properties, 4-phenylurazole as a compound containing nitrogen might be important in the multicomponent reaction used in agrochemicals, and pharmaceuticals. Considering the case of fused derivatives “pyrazolourazoles” which are highly applicable because of their application for analgesic, antibacterial, anti-inflammatory and antidiabetic activities as HSP-72 induction inhibitors (I and III) and novel microtubule assembly inhibitors. It should be mentioned that spiro-pyrazole also has biological activities like cytotoxic, antimicrobial, anticonvulsant, antifungal, anticancer, anti-inflammatory, and cardiotonic activities. Objective: Urazole has been used in many heterocyclic compounds which are valuable in organic syntheses. This review disclosed the advances in the use of urazole as the starting material in the synthesis of various biologically active molecules from 2006 to 2019. Conclusion: Compounds of urazole (1,2,4-triazolidine-3,5-dione) are the most important molecules which are highly active from the biological perspective in the pharmaceuticals as well as polymers. In summary, many protocols for preparations of the urazole derivatives from various substrates in multi-component reactions have been reported from different aromatic and aliphatic groups which have had carbonyl groups in their structures. It is noted that several catalysts have been synthesized to afford applicable molecules with urazole scaffolds. In some papers, being environmentally friendly, short time reactions and high yields are highlighted in the protocols. There is a room to synthesize new catalysts and perform new reactions by manipulating urazole to produce biologically active compounds, even producing chiral urazole component as many groups of chiral urazole compounds are important from biological perspective.


2021 ◽  
Vol 9 (A) ◽  
pp. 61-67
Author(s):  
Svetlana Ivasenko ◽  
Perizat Orazbayeva ◽  
Krystyna Skalicka–Wozniak ◽  
Agnieszka Ludwiczuk ◽  
Alexandr Marchenko ◽  
...  

BACKGROUND: The medicinal plant of Thymus serpyllum L. in nature, depending on the geographical region, climatic conditions, and growing environment, is represented with some chemotypes. Composition and quantitative content of the basic groups of the biologically active substances can be differed, and thus their biological properties are also various. AIM: The aim of the study was to determine possibility of the using the ultrasonic extracts of two chemotypes of T. serpyllum L. of Central Kazakhstan as an antimicrobial agent against test strains of microorganisms. MATERIALS AND METHODS: Two samples of T. serpyllum were extracted with 70% ethanol using ultrasound. The polyphenol content of the ultrasound extracts was determined using the LC-ultraviolet-ESI- tandem mass spectrometry technique. A study of an antimicrobial activity of the ultrasonic extracts was performed with eight strains of Gram-positive bacteria, six strains of Gram-negative bacteria, and four cultures of fungi. RESULTS: The ultrasonic extracts of two chemotypes of T. serpyllum L. are similar in composition of phenolic compounds but differ in a quantitative content of phenolic acids and flavonoids, except for a rosmarinic acid. The ultrasonic extracts have a wide spectrum of antimicrobial activity, exhibit the bactericidal or bacteriostatic activity against all tested bacteria and fungi at a concentration of 0.0625–20 mg/ml, but differ in their strength of action against test strains of microorganisms. CONCLUSION: The ultrasonic extracts of two chemotypes of T. serpyllum L. of Central Kazakhstan can be considered as a potential drug with a wide spectrum of antimicrobial activity. The results of chromatographic analysis will be used for standardization of a drug.


2020 ◽  
Vol 16 ◽  
pp. 1662-1682 ◽  
Author(s):  
Jorge Escorihuela ◽  
Daniel M Sedgwick ◽  
Alberto Llobat ◽  
Mercedes Medio-Simón ◽  
Pablo Barrio ◽  
...  

The Pauson–Khand reaction (PKR) is one of the key methods for the construction of cyclopentenone derivatives, which can in turn undergo diverse chemical transformations to yield more complex biologically active molecules. Despite the increasing availability of fluorinated building blocks and methodologies to incorporate fluorine in compounds with biological interest, there have been few significant advances focused on the fluoro-Pauson–Khand reaction, both in the inter- and intramolecular versions. Furthermore, the use of vinyl fluorides as olefinic counterparts had been completely overlooked. In this review, we collect the advances both on the stoichiometric and catalytic intermolecular and intramolecular fluoro-Pauson–Khand reaction, with special attention to the PKR of enynes containing a fluoride moiety.


2020 ◽  
Vol 27 (3) ◽  
pp. 78-91
Author(s):  
N. S. Benderskii ◽  
O. M. Kudelina ◽  
E. V. Gantsgorn ◽  
A. V. Safronenko

This review article is devoted to the fundamental task of pharmacology, i.e. the research and discovery of novel medications that render the maximal therapeutic effect at the minimal side consequences to health. Over recent years, the world has witnessed a growing interest towards natural organic compounds on the basis of humic substances (HS), which are broadly applied in animal husbandry, agriculture and veterinary medicine due to a wide spectrum of biologically active properties. The results of chemical and biological trials demonstrate that HS have a great potential for various fields of medicine.Numerous studies have demonstrated the cardioprotective, antioxidant, antitumour, antibacterial, antiviral, antifungal, antiallergic, membranotropic, hepatoprotective and anti-inflammatory properties of HS. In addition, these substances exhibit a stimulating effect on metabolism, thus enhancing specific and non-specific organismal resistance. Published evidence suggests no toxicity of HS and no inherent teratogenic, embryotoxic, mutagenic or carcinogenic properties.Fulvic acid (FA) belongs to humic acids, a family of HS. In the present study, we review its chemical properties and biological activity from the standpoint of traditional medicine. Understanding biological properties of FA and its usage in novel drug design is a perspective avenue of research in contemporary medicine.Published sources referenced in this review are indexed in Scopus, Web of Science, MedLine, the Cochrane Library, eLIBRARY, PubMed and other relevant databases.


2020 ◽  
Vol 16 ◽  
Author(s):  
Digamber S. Pawar ◽  
Vasant V. Chabukswar ◽  
Savita R. Tapase ◽  
Kisan M. Kodam ◽  
Anurudhha Chabukswar ◽  
...  

Background: Coumarins are naturally occurring biologically active heterocyclic molecules endowed with a wide range of biological properties, including antibacterial, antifungal and antitumor activities. Objective: The present work aimed to synthesize new coumarin-containing compounds and to investigate their cytotoxic activity. Methods: Coumarin peptide and coumarin amino alcohols were prepared by treating epoxide-containing coumarin derivatives with suitable aromatic amines and peptides in trifluoroethanol as a solvent at 50 °C. These derivatives were evaluated for their cytotoxic activity on three different cell lines: HeLa, MDA-MB-231 and L-132. Cell viability was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) based assay. Results: A new protocol has been developed for the synthesis of thirteen novel coumarin peptide and coumarin amino alcohol derivatives. Among the tested compounds, three derivatives showed significant activity against all the tested cell lines. Docking studies indicated favorable interactions of the di-substituted peptide coumarin derivatives with the Asp 351 and Thr 347 amino acids at the active site of human estrogen receptor. Conclusions: The results suggest that the newly synthesized compounds may be promising candidates in the research of new antitumor compounds.


2019 ◽  
Vol 91 (7) ◽  
pp. 1065-1071 ◽  
Author(s):  
Nadezhda E. Ustyuzhanina ◽  
Maria I. Bilan ◽  
Nikolay E. Nifantiev ◽  
Anatolii I. Usov

AbstractFucosylated chondroitin sulfates (FCS) are unique glycosaminoglycans isolated from body walls of sea cucumbers (holothuria). These biopolymers are composed of a chondroitin core [→4)-β-D-GlcA-(1→3)-β-D-GalNAc-(1→]nbearing fucosyl branches and sulfate groups. Structural variations of FCS are species specific and depend on type, amount and position of branches, as well as on degree and pattern of sulfation of a backbone and branches. A wide spectrum of biological properties was determined for these polysaccharides including anticoagulant, antithrombotic, antitumor, anti-inflammatory activities. Structural features of FCS influence significantly on their biological effect. In this review recent data about structural variations within holothurian FCS are summarized. The NMR data of the key building blocks are presented, which may be used for the analysis of new FCS.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3576
Author(s):  
Lisa-Maria Rečnik ◽  
Wolfgang Kandioller ◽  
Thomas L. Mindt

Peptides represent an important class of biologically active molecules with high potential for the development of diagnostic and therapeutic agents due to their structural diversity, favourable pharmacokinetic properties, and synthetic availability. However, the widespread use of peptides and conjugates thereof in clinical applications can be hampered by their low stability in vivo due to rapid degradation by endogenous proteases. A promising approach to circumvent this potential limitation includes the substitution of metabolically labile amide bonds in the peptide backbone by stable isosteric amide bond mimetics. In this review, we focus on the incorporation of 1,4-disubstituted 1,2,3-triazoles as amide bond surrogates in linear peptides with the aim to increase their stability without impacting their biological function(s). We highlight the properties of this heterocycle as a trans-amide bond surrogate and summarise approaches for the synthesis of triazole-containing peptidomimetics via the Cu(I)-catalysed azide-alkyne cycloaddition (CuAAC). The impacts of the incorporation of triazoles in the backbone of diverse peptides on their biological properties such as, e.g., blood serum stability and affinity as well as selectivity towards their respective molecular target(s) are discussed.


2021 ◽  
pp. 5-26
Author(s):  
Erkin Khozhiakbarovich Botirov ◽  
Viktoriya Mikhaylovna Bonacheva ◽  
Natalya Eduardovna Kolomiets

The review summarizes the scientific literature on the degree of knowledge of the chemical composition and biological activity of metabolites and plant extracts of the genus Equisetum L. of the world flora. Many types of horsetail are widely used in folk medicine as a diuretic, hemostatic, as well as for pulmonary tuberculosis and skin diseases, ulcers, dropsy, jaundice, as a heart remedy, for diseases of the kidneys, bladder, etc. Based on extracts of the horsetail canes (Equisetum arvense L.) a number of drugs and biologically active additives with a wide spectrum of pharmacological action have been created. The review presents data on the structural diversity and biological activity of metabolites of plants of the genus Equisetum L. Information is provided on the composition of the metabolites of 16 species of the genus Equisetum L., the structure and sources of more than 200 natural substances related to terpenoids, phytosterols, brassinosteroids, vitamins, alkaloids and other nitrogen-containing compounds , lignans, styryl pyrones, indanones, phenylpropanoids, organic acids, hydrocarbons, aldehydes and phenolic compounds. The main biologically active substances of plants of the genus Equisetum are flavonoids and other plant phenolic compounds. Extracts and individual compounds possess antioxidant, diuretic, antibacterial, antifungal, hepatoprotective, hypoglycemic, antimutagenic, sedative, anxiolytic, anti-tumor, anti-inflammatory properties. An analysis of literature data shows that plants of the genus Equisetum are promising for the creation of new effective drugs. The information presented in the review can be used as reference literature by phytochemists, biologists, and pharmacologists, as well as to solve the problems of chemosystematics of plants of the genus Equisetum L.


2019 ◽  
Author(s):  
Chem Int

A series of heterocyclic compounds incorporating pyridazine moiety were for diverse biological activities. Pyridazines and pyridazinones derivatives showed wide spectrum of biological activities such as vasodialator, cardiotonic, anticonvulsant, antihypertensive, antimicrobial, anti-inflammatory, analgesic, anti-feedant, herbicidal, and various other biological, agrochemical and industrial chemical activities. The results illustrated that the synthesized pyridazine/pyridazine compounds have diverse and significant biological activities. Mechanistic insights into the biological properties of pyridazinone derivatives and various synthetic techniques used for their synthesis are also described.


2020 ◽  
Vol 24 (21) ◽  
pp. 2508-2523
Author(s):  
Johana Gómez ◽  
Diego Sierra ◽  
Constanza Cárdenas ◽  
Fanny Guzmán

One area of organometallic chemistry that has attracted great interest in recent years is the syntheses, characterization and study of organometallic complexes conjugated to biomolecules with different steric and electronic properties as potential therapeutic agents against cancer and malaria, as antibiotics and as radiopharmaceuticals. This minireview focuses on the unique structural diversity that has recently been discovered in α- amino acids and the reactions of metallocene complexes with peptides having different chemical behavior and potential medical applications. Replacing α-amino acids with metallocene fragments is an effective way of selectively influencing the physicochemical, structural, electrochemical and biological properties of the peptides. Consequently, research in the field of bioorganometallic chemistry offers the opportunity to develop bioactive metal compounds as an innovative and promising approach in the search for pharmacological control of different diseases.


Sign in / Sign up

Export Citation Format

Share Document