scholarly journals Competitive Biological Activities of Chitosan and Its Derivatives: Antimicrobial, Antioxidant, Anticancer, and Anti-Inflammatory Activities

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Suyeon Kim

Chitosan is obtained from alkaline deacetylation of chitin, and acetamide groups are transformed into primary amino groups during the deacetylation. The diverse biological activities of chitosan and its derivatives are extensively studied that allows to widening the application fields in various sectors especially in biomedical science. The biological properties of chitosan are strongly depending on the solubility in water and other solvents. Deacetylation degree (DDA) and molecular weight (MW) are the most decisive parameters on the bioactivities since the primary amino groups are the key functional groups of chitosan where permits to interact with other molecules. Higher DDA and lower MW of chitosan and chitosan derivatives demonstrated higher antimicrobial, antioxidant, and anticancer capacities. Therefore, the chitosan oligosaccharides (COS) with a low polymerization degree are receiving a great attention in medical and pharmaceutical applications as they have higher water solubility and lower viscosity than chitosan. In this review articles, the antimicrobial, antioxidant, anticancer, anti-inflammatory activities of chitosan and its derivatives are highlighted. The influences of physicochemical parameters of chitosan like DDA and MW on bioactivities are also described.

2019 ◽  
Author(s):  
Chem Int

A series of heterocyclic compounds incorporating pyridazine moiety were for diverse biological activities. Pyridazines and pyridazinones derivatives showed wide spectrum of biological activities such as vasodialator, cardiotonic, anticonvulsant, antihypertensive, antimicrobial, anti-inflammatory, analgesic, anti-feedant, herbicidal, and various other biological, agrochemical and industrial chemical activities. The results illustrated that the synthesized pyridazine/pyridazine compounds have diverse and significant biological activities. Mechanistic insights into the biological properties of pyridazinone derivatives and various synthetic techniques used for their synthesis are also described.


2019 ◽  
Vol 16 (7) ◽  
pp. 953-967 ◽  
Author(s):  
Ghodsi M. Ziarani ◽  
Fatemeh Mohajer ◽  
Razieh Moradi ◽  
Parisa Mofatehnia

Background: As a matter of fact, nitrogen as a hetero atom among other atoms has had an important role in active biological compounds. Since heterocyclic molecules with nitrogen are highly demanded due to biological properties, 4-phenylurazole as a compound containing nitrogen might be important in the multicomponent reaction used in agrochemicals, and pharmaceuticals. Considering the case of fused derivatives “pyrazolourazoles” which are highly applicable because of their application for analgesic, antibacterial, anti-inflammatory and antidiabetic activities as HSP-72 induction inhibitors (I and III) and novel microtubule assembly inhibitors. It should be mentioned that spiro-pyrazole also has biological activities like cytotoxic, antimicrobial, anticonvulsant, antifungal, anticancer, anti-inflammatory, and cardiotonic activities. Objective: Urazole has been used in many heterocyclic compounds which are valuable in organic syntheses. This review disclosed the advances in the use of urazole as the starting material in the synthesis of various biologically active molecules from 2006 to 2019. Conclusion: Compounds of urazole (1,2,4-triazolidine-3,5-dione) are the most important molecules which are highly active from the biological perspective in the pharmaceuticals as well as polymers. In summary, many protocols for preparations of the urazole derivatives from various substrates in multi-component reactions have been reported from different aromatic and aliphatic groups which have had carbonyl groups in their structures. It is noted that several catalysts have been synthesized to afford applicable molecules with urazole scaffolds. In some papers, being environmentally friendly, short time reactions and high yields are highlighted in the protocols. There is a room to synthesize new catalysts and perform new reactions by manipulating urazole to produce biologically active compounds, even producing chiral urazole component as many groups of chiral urazole compounds are important from biological perspective.


2020 ◽  
Vol 23 (24) ◽  
pp. 2679-2721 ◽  
Author(s):  
Evangelia-Eirini N. Vlachou ◽  
Konstantinos E. Litinas

Pyrano- and dipyranocoumarins are classes of naturally occurring organic compounds with very interesting biological activities. This review focuses on the synthetic strategies for the synthesis of pyranocoumarins and dipyranocoumarins and the biological properties of those compounds. The synthesis involves the formation of the pyran ring, at first, from a coumarin or the formation of pyranone moiety from an existing pyran. Pyranocoumarins and dipyranocoumarins present anti-HIV, anti-cancer, neuroprotective, antidiabetic, antibacterial, antifungal, anti-inflammatory activities. Especially khellactones and calanolides are usually potent and selective in anti-HIV activity. Decursin and decursinol derivatives are effective as anticancer, neuroprotective, antidiabetic, antibacterial, and antifungal agents.


2019 ◽  
Vol 20 (4) ◽  
pp. 444-452 ◽  
Author(s):  
Joanna Drogosz ◽  
Anna Janecka

Sesquiterpene lactones, secondary metabolites of plants, present in a large number of species mostly from the Asteracea family, are used in the traditional medicine of many countries for the treatment of various pathological conditions. They exert a broad range of activities, including antiinflammatory, anti-bacterial and anti-cancer properties. The best-known sesquiterpene lactones which are already used as drugs or are used in clinical trials are artemisinin, thapsigargin and parthenolide. Yet another sesquiterpene lactone, helenalin, an active component of Arnica montana, known for its strong anti-inflammatory activity, has been used for centuries in folk medicine to treat minor injuries. Unfortunately, helenalin’s ability to cause allergic reactions and its toxicity to healthy tissues prevented so far the development of this sesquiterpene lactone as an anticancer or anti-inflammatory drug. Recently, the new interest in the biological properties, as well as in the synthesis of helenalin analogs has been observed. This review describes helenalin's major biological activities, molecular mechanisms of action, its toxicity and potential for further research.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5381
Author(s):  
Rimsha Irfan ◽  
Shikufa Mousavi ◽  
Meshari Alazmi ◽  
Rahman Shah Zaib Saleem

Chalcones, members of the flavonoid family, display a plethora of interesting biological activities including but not limited to antioxidant, anticancer, antimicrobial, anti-inflammatory, and antiprotozoal activities. The literature cites the synthesis and activity of a range of natural, semisynthetic, and synthetic chalcones. The current review comprehensively covers the literature on amino-substituted chalcones and includes chalcones with amino-groups at various positions on the aromatic rings as well as those with amino-groups containing mono alkylation, dialkylation, alkenylation, acylation, and sulfonylation. The aminochalcones are categorized according to their structure, and the corresponding biological activities are discussed as well. Some compounds showed high potency against cancer cells, microbes, and malaria, whereas others did not. The purpose of this review is to serve as a one-stop location for information on the aminochalcones reported in the literature in recent years.


Author(s):  
Sónia Pedreiro ◽  
Sandrine da Ressurreição ◽  
Maria Lopes ◽  
Maria Teresa Cruz ◽  
Teresa Batista ◽  
...  

Crepis vesicaria subsp. taraxacifolia (Cv) of Asteraceae family is used as food and in traditional medicine. However there are no studies on its nutritional value, phenolic composition and biological activities. In the present work, a nutritional analysis of Cv leaves was performed and its phenolic content and biological properties evaluated. The nutritional profile was achieved by gas chromatography (GC). A 70% ethanolic extract was prepared and characterized by HLPC-PDA-ESI/MSn. The quantification of chicoric acid was determined by HPLC-PDA. Subsequently, it was evaluated its antioxidant activity by DPPH, ABTS and FRAP methods. The anti-inflammatory activity and cellular viability was assessed in Raw 264.7 macrophages. On wet weight basis, carbohydrates were the most abundant macronutrients (9.99%), followed by minerals (2.74%) (mainly K, Ca and Na), protein (1.04%) and lipids (0.69%), with a low energetic contribution (175.19 KJ/100 g). The Cv extract is constituted essentially by phenolic acids as caffeic, ferulic and quinic acid derivatives being the major phenolic constituent chicoric acid (130.5 mg/g extract). The extract exhibited antioxidant activity in DPPH, ABTS and FRAP assays and inhibited the nitric oxide (NO) production induced by LPS (IC50 = 0.428 ± 0.007 mg/mL) without cytotoxicity at all concentrations tested. Conclusions: Given the nutritional and phenolic profile and antioxidant and anti-inflammatory properties, Cv could be a promising useful source of functional food ingredients.


Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 69
Author(s):  
Dawei Yu ◽  
Jiayao Feng ◽  
Huimin You ◽  
Shipeng Zhou ◽  
Yan Bai ◽  
...  

Chitosan obtained from abundant marine resources has been proven to have a variety of biological activities. However, due to its poor water solubility, chitosan application is limited, and the degradation products of chitosan oligosaccharides are better than chitosan regarding performance. Chitosan oligosaccharides have two kinds of active groups, amino and hydroxyl groups, which can form a variety of derivatives, and the properties of these derivatives can be further improved. In this review, the key structures of chitosan oligosaccharides and recent studies on chitosan oligosaccharide derivatives, including their synthesis methods, are described. Finally, the antimicrobial and antitumor applications of chitosan oligosaccharides and their derivatives are discussed.


2018 ◽  
Vol 3 (3) ◽  

Boswellia dalzielii is the West African species of the frankincense producing genus (B. carterii, B. frereana and B. serrata are the more popular congeners). Its ethnobotanical uses include the treatment of rheumatism, venereal diseases and gastro-intestinal disorders, among others.Scientific investigations were carried out to evaluate the biological properties relevant to their ethnomedical uses and to better understand the chemistry of the plant. This is with a view to identifying possible applications for medicinal, cosmetic and industrial purposes. The stem bark was subjected to solvent extraction and activity-directed fractionation to isolate bioactive compounds. The isolated compounds were characterised using joint spectroscopic techniques, including 2-D NMR and Mass Spectrometry. The gum resin was steam-distilled to obtain volatile oil, which was analysed by GC-MS. Another portion of gum resin was also extracted by organic solvent and fractionated by column chromatography. From the results obtained; the antimicrobial/antioxidant activity of the stem bark was accounted for by isolated compounds – protocatechuic acid, gallic acid and ethyl gallate with minor contribution from a novel stilbene glycoside and a cembranediterpenoid (incensole). The extracts also demonstrated antifungal, anti-inflammatory, cytotoxic and hypoglycemic effects. The gum resin (frankincense) showed anti-inflammatory activity and yielded volatile oil consisting mainly of monoterpenes (fragrant essence). The gum resin extract yielded incensole and 3-O-acetyl-11-ketoboswellic acid (AKBA). The spectrum of biological activities observed justifies the ethnomedical uses and suggests great potential for further drug development. The essential oil can be employed in perfumery products and in related industry


2013 ◽  
Vol 8 (2) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Chuan-Rui Zhang ◽  
Robert E. Schutzki ◽  
Muraleedharan G. Nair

Berberis thunbergii var. atropurpurea. DC is one of the popular landscape plants in the USA, but until now lacked report on its chemical composition and biological properties. In this study, the antioxidant and anti-inflammatory activities of the methanolic extract and pure isolates of B. thunbergii var. atropurpurea, Crimson Pygmy, roots were evaluated using established bioassay procedures. The methanolic extract gave an absorbance value of 0.44 at 250 μg/mL concentration in the MTT assay. In addition, the extract inhibited lipid peroxidation (LPO) by 93% and the cyclooxygenase enzymes, COX-1 by 54 and COX-2 by 34%, at 100 μg/mL concentration. Therefore, a bioactivity-guided purification was carried out yielding pure isolates, out of which compounds 3-6 inhibited LPO by 34-66% at 100 μg/mL concentration. Similarly, compounds 1-6 inhibited COX-1 and −2 by 24-65 and 23-43% at 25 μg/mL concentration, respectively. This is the first report of the chemical constituents and biological activities of this plant.


2019 ◽  
Author(s):  
Chem Int

A series of heterocyclic compounds incorporating pyridazine moiety were for diverse biological activities. Pyridazines and pyridazinones derivatives showed wide spectrum of biological activities such as vasodialator, cardiotonic, anticonvulsant, antihypertensive, antimicrobial, anti-inflammatory, analgesic, anti-feedant, herbicidal, and various other biological, agrochemical and industrial chemical activities. The results illustrated that the synthesized pyridazine/pyridazine compounds have diverse and significant biological activities. Mechanistic insights into the biological properties of pyridazinone derivatives and various synthetic techniques used for their synthesis are also described.


Sign in / Sign up

Export Citation Format

Share Document