Effects of concentration and temperature on the rheological behavior of concentrated sodium lignosulfonate (NaLS) solutions

Holzforschung ◽  
2015 ◽  
Vol 69 (3) ◽  
pp. 265-271 ◽  
Author(s):  
Qianqian Tang ◽  
Mingsong Zhou ◽  
Dongjie Yang ◽  
Xueqing Qiu

Abstract Concentrated sodium lignosulfonate (NaLS) solutions have wide industrial applications. Therefore, the viscoelastic properties of NaLS in concentrations of 55%–63% have been investigated between 5°C and 55°C by means of a dynamic rheological technique, namely, the oscillatory rheological experiments were conducted in a rheometer in the small amplitude oscillatory mode. All solutions showed “shear-thinning” behavior over frequency. The complex viscosity (η*) increased and the loss tangent (tanδ) decreased with increasing concentrations. Both the storage modulus (G′) and the loss modulus (G″) increased with increasing frequencies and concentrations. The change in viscoelastic behavior was probably caused by stronger aggregation effects. However, the effects of temperature on the viscoelastic properties are more complex. For 60% NaLS, G′, G″, and η* decreased, but tanδ increased with increasing temperatures. When the temperature exceeded 20°C, G′, G″, and η* increased, but tanδ decreased, and the relaxation times were increased as a function of temperature. The change in viscoelasticity as a function of temperature may also be related to intermolecular aggregation and the swelling of aggregates. The conductivity experiments indicated that the formation of a greater strength of network structures at higher levels of concentrations between 55% and 63% and temperatures between 20°C and 55°C was probably responsible for elasticity enhancement.

2019 ◽  
Vol 285 ◽  
pp. 380-384
Author(s):  
Gerardo Sanjuan-Sanjuan ◽  
Ángel Enrique Chavez-Castellanos

The subject of this work is to investigate viscoelastic properties such as loss modulus (G ́ ́), storage modulus (G ́), complex shear modulus (G*), complex viscosity (η*) and loss angle () at different temperatures by means of a small-amplitude oscillatory test. These properties allow to provide information about materials structure. For this purpose, we employed a tin-lead alloy (Sn-15%Pb) which exhibits a similar microstructure to aluminum alloys and is the classic alloy for semisolid thixotropic studies. It is interesting to note that the Sn-15%Pb alloy exhibits a slightly decrease in storage modulus (G ́) over the entire frequency (0.01-10Hz) at high temperatures, showing its viscoelastic behavior. In addition, a detailed analysis of master curves (oscillatory tests) was made to relate the semisolid microstructure (solid fraction) with the plateau modulus (GN0) which is directly related with both molecular weight or percolation threshold in polymer and gels science respectively.


2020 ◽  
Vol 16 (4) ◽  
pp. 462-469
Author(s):  
Zhaleh Sheidaei ◽  
Bahareh Sarmadi ◽  
Seyede M. Hosseini ◽  
Fardin Javanmardi ◽  
Kianoush Khosravi-Darani ◽  
...  

<P>Background: The high amounts of fat, sugar and calorie existing in dairy desserts can lead to increase the risk of health problems. Therefore, the development of functional and dietary forms of these products can help the consumer health. </P><P> Objective: This study aims to investigate the effects of &#954;-carrageenan, modified starch and inulin addition on rheological and sensory properties of non-fat and non-added sugar dairy dessert. </P><P> Methods: In order to determine the viscoelastic behavior of samples, oscillatory test was carried out and the values of storage modulus (G′), loss modulus (G″), loss angle tangent (tan &#948;) and complex viscosity (&#951;*) were measured. TPA test was used for analysis of the desserts’ texture and textural parameters of samples containing different concentrations of carrageenan, starch and inulin were calculated. </P><P> Results: All treatments showed a viscoelastic gel structure with the storage modulus higher than the loss modulus values. Increasing amounts of &#954;-carrageenan and modified starch caused an increase in G′ and G″ as well as &#951;* and a decrease in tan &#948;. Also, firmness and cohesiveness were enhanced. The trained panelists gave the highest score to the treatment with 0.1% &#954;-carrageenan, 2.5% starch and 5.5% inulin (sucralose as constant = 0.25%) and this sample was the best treatment with desirable attributes for the production of non-fat and non-added sugar dairy dessert. </P><P> Conclusion: It can be concluded that the concentration of &#954;-carrageenan and starch strongly influenced the rheological and textural properties of dairy desserts, whereas the inulin content had little effect on these attributes.</P>


2019 ◽  
Vol 26 (4) ◽  
pp. 277-290 ◽  
Author(s):  
Mutlu Cevik ◽  
Filiz Icier

Frozen minced meat samples having fat contents of 2%, 10% and 18% were thawed using different methods (refrigeration thawing at ambient temperature of +4 ℃, under running cold water (+4 ℃) thawing, ohmic thawing for 10, 13 and 16 V/cm). Viscoelastic properties were determined by using rheological tests (oscillation and creep/recovery tests). Storage modulus, loss modulus, complex modulus, loss tangent, dynamic viscosity and complex viscosity values of minced meat samples increased as fat content increased. As frequency value increased, the modulus values of meat samples increased but dynamic and complex viscosity values of the samples decreased. The minced meat samples thawed by different methods had recoverable compliance values. The compliance values of meat samples during creep region can be well characterized by Burgers model. Ohmic thawing can be used as an alternative thawing method since it resulted in similar rheological properties of minced meat samples compared to refrigeration thawing at ambient temperature of +4 ℃ and under running cold water (+4℃) thawing.


1966 ◽  
Vol 39 (4) ◽  
pp. 823-840 ◽  
Author(s):  
Ruprecht Ecker

Abstract In earlier communications, we defined abrasion, especially of tires, as a thermal-oxidative process caused at high velocity of mechanical rupture. Other authors (e.g., Schallamach, Boggs, Zapp etc.), with theoretical and experimental tests, prove the importance of viscoelastic behavior as a characteristic property for abrasion. The results of experiments on six elastomers (NR, IR, BR, SBR, IIR, and EPT) compared in tire tread compounds are communicated and discussed in the present work. Tensile strength was determined over a temperature range of 20° to 140° C at deformation speeds of 10 to 20,000 % elongation per second. Forced, non-resonant vibrations were used to determine viscoelastic properties, e.g., resilience, storage modulus, and loss modulus. As abrasion is a consequence of frictional processes, coefficients of friction, dependent on temperature, were measured on dry, wet, and frosty asphalt/fine concrete track. The apparatus is briefly described. From these test results, an empirical relation established between abrasion, friction, viscoelastic properties, tensile strength at high speed and temperature allows one to predetermine the abrasion behavior of a vulcanizate in the laboratory.


2005 ◽  
Vol 475-479 ◽  
pp. 2387-2390 ◽  
Author(s):  
X.M. Li ◽  
Qing Ling Feng

In this study, a novel bioabsorbable porous bone scaffold reinforced by chitin fibres was prepared, the porosity of which is about 90 % and the pore size is approximately 200µm. The Advanced Rheological Enlarged System (ARES) was used to study the dynamic rheological behaviors of the ropy materials which would be made into the reinforced scaffold. The increase of the fibres’ volume content (Cf) enhanced the complex modulus (G*) and complex viscosity (h*) of the materials, the reason of which is that the fibres formed networks in the materials. When Cf increased from 35 % to 45 %, the storage modulus (G’) and loss modulus (G’’) curve showed obvious yielding behavior, which indicates that G’ and G’’ of the materials are hardly variable in a wide range. When Cf was more than 35 %, the loss factor (tand) was obviously lower than 1 and the materials exhibited viscoelastic properties, which result in a disadvantage for materials’ processing.


1990 ◽  
Vol 18 (4) ◽  
pp. 262-281 ◽  
Author(s):  
J. T. Tielking ◽  
R. R. Hanson ◽  
A. J. Giacomin

Abstract Specimens cut from a 40 × 14 nylon cord aircraft tire were subjected to cyclic strain tests to measure the viscoelastic behavior. Spectral analysis was used to quantify nonlinearity in the stress response. Preliminary studies were made to ascertain the effects of specimen length and width on the test results. A bolted end constraint was developed to uniformly distribute the imposed strain through the thickness of the multiply carcass specimens. Test results show the effects of temperature, frequency, and strain level on the viscoelastic properties. Results are generally in agreement with earlier findings made using tubular test specimens.


2021 ◽  
Vol 71 (1) ◽  
pp. 77-83
Author(s):  
Zhu Li ◽  
Jiali Jiang ◽  
Jianxiong Lyu ◽  
Jinzhen Cao

Abstract In order to better understand the differences in orthotropic viscoelastic properties of Chinese fir (Cunninghamia lanceolata) in frozen and non-frozen states, the storage modulus (E′) and loss modulus (E″) of the longitudinal, radial, and tangential specimens were investigated under water-saturated conditions with temperatures ranging from −120°C (or 30°C) to 280°C. Results revealed that the order of magnitude in E′ for each orientation was consistent for temperatures below 0°C, while the anisotropy in E′ was reduced due to the enhancement effect of ice. Frequency-dependent γ-relaxation was observed at approximately −96°C for all orthotropic directions. A sharp discontinuity in E′ occurred at approximately 0°C for each specimen, together with the corresponding sharp peak in the E″ spectrum. Furthermore, the frozen free water had an effect on the orthotropic viscoelastic behavior in the water-saturated specimens within the range of −120°C to 280°C. Specimens with a frozen history leveled off at the initial temperature ramping phase for each orientation, while a frozen history reduced the decline in stiffness of the wood specimens. Similar to the variations in E′, the dramatic loss of water increased the complexity of the E″ values. The loss of free water also had a pronounced effect on the viscoelastic properties during the temperature ramping process. Thus, in the wood industry, it necessary to consider the variations in the orthotropic viscoelastic performance of specimens under water-saturated conditions during the water loss process.


2017 ◽  
Vol 3 (2) ◽  
pp. 699-702
Author(s):  
Sabine Illner ◽  
Olga Sahmel ◽  
Stefan Siewert ◽  
Thomas Eickner ◽  
Niels Grabow

AbstractDevelopment of new implant coatings with temperature-controlled drug release to treat infections after device implantation can be triggered by highly elastic hydrogels with adequate stability and adhesive strength in the swollen state. By using an ionic liquid (IL [ViPrIm]+[Br]−) as additive to N-isopropylacrylamide (NIPAAm) unique effects on volumetric changes and mechanical properties as well as thermoresponsive drug release of the obtained hybrid hydrogels were observed. In this context, rheological measurements allow the monitoring of gelation processes as well as chemical, mechanical, and thermal treatments and effects of additives. Hybrid hydrogels of pNIPAAm and poly (ionic liquid) (PIL) were prepared by radical emulsion polymerization with N,N′-methylenebis(acrylamide) as 3D crosslinking agent. By varying monomer, initiator and crosslinker amounts the multi-compound system during polymerization was monitored by oscillatory time sweep experiments. The time dependence of the storage modulus (G′) and the loss modulus (G″) was measured, whereby the intersection of G′ and G″ indicates the sol-gel transition. Viscoelastic behavior and complex viscosity of crosslinked and non-crosslinked hydrogels were obtained. Within material characterization rheology can be used to determine process capability and optimal working conditions. For biomedical applications complete hydrogelation inter-connecting all compounds can be received providing the possibility to process mechanically stable, swellable implant coatings or wound closures.


2021 ◽  
Vol 3 (4) ◽  
pp. 2411-2425
Author(s):  
Ângelo M. L. Denadai ◽  
Euler T. Dos Santos ◽  
Humberto L. Dos Santos ◽  
José M. Q. Moreira ◽  
Fernando C. De Oliveira ◽  
...  

RESUMO O comportamento viscoelástico dos licores negros de eucalipto (LN) do processo de polpação Kraft da CENIBRA foi avaliado a 25 oC, na ausência (LNSC) e na presença (LNCC) de cinzas da ebulição da recuperação química, que são geralmente misturadas com licores negros para melhorar a eficiência da recuperação química. As amostras foram tosquiadas em campos rotativos e oscilatórios, mostrando os comportamentos de cisalhamento e cisalhamento dependentes da taxa de cisalhamento aplicada. A viscosidade complexa - *, o módulo de armazenamento e perda - G' e G'', e a tensão de rendimento 0 para LNSC foram todos muito superiores ao LNCC, provavelmente devido à fragmentação molecular causada pela adição de cinzas.   ABSTRACT The viscoelastic behavior of eucalyptus black liquors (LN) from CENIBRA Kraft pulping process was evaluated at 25 oC, in absence (LNSC) and in presence (LNCC) of ash from chemical recovery boiling, which are usually mixed with black liquors to improve the efficiency of chemical recovery. The samples were sheared upon rotational and oscillatory fields, showing booth shear-thickening and shear-thinning behaviors dependent of applied shear rate. The complex viscosity – h*, storage and loss modulus – G’ and G’’, and yield stress s0 for LNSC were all very higher than LNCC, probably due the molecular fragmentation caused by addition of ashes.


2021 ◽  
pp. 096739112110012
Author(s):  
Qingsen Gao ◽  
Jingguang Liu ◽  
Xianhu Liu

The effect of annealing on the electrical and rheological properties of polymer (poly (methyl methacrylate) (PMMA) and polystyrene (PS)) composites filled with carbon black (CB) was investigated. For a composite with CB content near the electrical percolation threshold, the formation of conductive pathways during annealing has a significant impact on electrical conductivity, complex viscosity, storage modulus and loss modulus. For the annealed samples, a reduction in the electrical and rheological percolation threshold was observed. Moreover, a simple model is proposed to explain these behaviors. This finding emphasizes the differences in network formation with respect to electrical or rheological properties as both properties belong to different physical origins.


Sign in / Sign up

Export Citation Format

Share Document