Synthesis of Non-Toxic Fe2(WO4)3 Photocatalyst with Efficient Performance

2020 ◽  
Vol 16 ◽  
Author(s):  
Imran Aslam ◽  
M. Saqib ◽  
M. W. Iqbal ◽  
Rajender Boddula ◽  
Tariq Mahmood ◽  
...  

Background: Environmental pollution has become a worldwide problem. In this regard, decontamination of wastewater and removal of organic pollutants from environment by photocatalysis has emerged as one of the most promising techniques from last few decades. Objective : In order to degrade the harmful pollutants from wastewater, highly efficient non-toxic Fe2(WO4)3 photocatalyst will be synthesized via co precipitation method. The photocatalytic activity of the as-synthesized material will be examined by degrading methylene blue (MB) under various conditions. Methods: For this purpose, different experimental parameters such as catalyst load, model compound concentration, H2O2 percentage and pH value were adjusted for excellent degradation of MB, and response surface methodology (RSM) along with central composite design (CCD) as adequate model was employed for optimization process. Results: The experimental results revealed that 1.2 g/L of catalyst load, 10 g/L for dye concentration, 0.5 percentage of H2O2 and pH 7 are found to be the optimized values for the aforesaid parameters. The optimized values led to 93% degradation of MB under UV light exposure. In addition, toxicological studies have been analysed by using various bioassays for both untreated and treated samples and a conspicuous reduction (69.12%) in the toxicity level was observed. Conclusion: The study signifies that this method is useful for reclamation of water making it useful for industry and irrigation.

2020 ◽  
Vol 81 (6) ◽  
pp. 1296-1307
Author(s):  
R. Jeyachitra ◽  
S. Kalpana ◽  
T. S. Senthil ◽  
Misook Kang

Abstract Methylene blue (MB) dye is the most common harmful, toxic, and non-biodegradable effluent produced by the textile industries. The present study investigates the effect of zinc oxide (ZnO) nanoparticles (NPs) and Ag–Ni doped ZnO NPs on the performance of photocatalytic degradation of MB dye. Pure ZnO and Ag–Ni doped ZnO NPs are synthesized using the co-precipitation method. The crystalline nature and surface morphology of the synthesized pure ZnO and Ag–Ni doped ZnO NPs was characterized by powder X-ray diffraction, scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM) analysis. The presence of spherical-like morphologies was confirmed from SEM and HRTEM analysis. The presence of Ni–O and Zn–O bands in the synthesized materials was found by Fourier transform infrared (FTIR) spectroscopy analysis. The MB dye was degraded under UV-light exposure in various pH conditions. The Ag (0.02%)–Ni doped ZnO NPs exhibits highest photocatalytic activity of 77% under pH 4.


2015 ◽  
Vol 827 ◽  
pp. 19-24 ◽  
Author(s):  
Nur Afifah ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

In this study, the photocatalytic activity of pure Fe- doped ZnO and Fe- doped ZnO/Montmorillonite nanocomposite has been investigated for the degradation of malachite green under UV light irradiation. Both photocatalysts were synthesized using co-precipitation method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier-transform infrared absorption, and electron spin resonance. The results showed that the photocatalytic efficiency is better in the presence of montmorillonite compared to pure Fe- doped ZnO. To detect the possible reactive species involved in degradation of organic dyes control experiments with introducing scavengers into the solution of organic dyes were carried out. It is found that electron plays an important role in the degradation of malachite green.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-14
Author(s):  
Muhammad Nur Iman Amir ◽  
Nurhidayatullaili Muhd Julkaplia ◽  
Saba Afzal

Titanium dioxide (TiO2) nanoparticles are used enormously for treating wastewater pollutants due to their unique optoelectronic and physiochemical properties. Though, wide bandgap, fast recombination of e- - h+ pair, and low adsorption toward organic pollutants limit their applications. However, immobilization of TiO2 on Chitosan (Cs) is believed to overcome these limitations. Cs with plenty of NH2 and OH groups in their structure are expected to enhance their adsorption and consequently photocatalytic performance. A series of TiO2/Cs photocatalysts have been prepared using a chemical co-precipitation method. Amount of TiO2 is varied from 0.25, 0.50, and 0.75 to 1.0 g. The photocatalysts are characterized by using FESEM-EDS, CHNS Elemental Analyser TGA, FTIR, and UV-Vis spectroscopy. These characterization results revealed the formation of a good interface between TiO2 and Cs matrix. Increasing TiO2 content significantly increased the thermal stability of the photocatalyst up to 600ᵒC. The photocatalytic activity of Cs/TiO2 is observed under UV light which is found to be more significant with 1:1(TiO2: Cs) composition for the degradation of methylene blue dye at 85 % and be maintained up to 4 numbers of cycles. This demonstrated open new insight into the application of Cs as a support materials and adsorption agent in TiO2 based photocatalyst system


2015 ◽  
Vol 1094 ◽  
pp. 15-19
Author(s):  
Lin Xia Yan ◽  
Sen Lin Tian ◽  
Qiu Lin Zhang

Cu-Al catalysts were synthesized by the co-precipitation method to study hydrolysis of hydrogen cyanide. During the synthesis, the impact of Cu/Al molar ratio, pH value and calcination temperature was investigated and the best synthesis condition was found. The results indicate that the remove of hydrogen cyanide first increases and then decreases with increasing Cu/Al molar ratio, pH value and calcination temperature, which reaches the maxima and remains above 95% at 360 min when Cu/Al molar ratio is 2:1, pH value is approximately 8.0 and calcination temperature is 400°C around. The analysis of X-ray diffraction (XRD) shows that Cu content is the main influence factor at Cu/Al molar ratio below 2:1 whereas crystallinity of catalysts is the key factor at Cu/Al molar ratio above 2:1.


2013 ◽  
Vol 756 ◽  
pp. 74-79 ◽  
Author(s):  
Bashiru Kayode Sodipo ◽  
Azlan Abdul Aziz

Superparamagnetic iron oxide nanoparticles (SPION) of sizes 5 to10 nm were synthesized by the co-precipitation method. They are coated with silica nanoparticles using sonication method. The SPION was produced under the optimum pH of 10, peptized in acidic medium and redispersed in water. The silica nanoparticles were produced through the Stöbermethod. Sonochemical coating of silica nanoparticle on the SPION was successfulat a pH value lower than 5. Otherwise, at higher pH value (but lower than point zero charge (PZC)), the SPION were found to be unstable. Fast hydrolysis of triethoxyvinylsilane(TEVS) shows that silica forms its own particles without coating onto the surfaces of the SPION. Under optimized experimental condition, sonochemical method of coating silica nanoparticles onto the SPION can be considered as an alternative for effective and prompt method that rely mainly on pH of the suspension.


2015 ◽  
Vol 827 ◽  
pp. 43-48
Author(s):  
Annisa Noorhidayati ◽  
Mia Putri Rahmawati ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

Transition metal ions (Co and Cr) doped ZnO nanoparticles supported on natural zeolite were synthesized using co-precipitation method. The synthesized samples were characterized by means of X-ray diffraction, energy dispersive X-ray, Fourier-transform infrared absorption, and UV-visible diffuse reflectance spectroscopy. The samples were further used as photocatalyst for degradation of methyl orange and methylene blue in aqueous solutions under UV light irradiation. The results showed that zeolite supported Cr-doped ZnO nanoparticles is more efficient compared with zeolite supported Co-doped ZnO nanoparticles. It is also revealed that zeolite supported samples possessed higher photocatalytic efficiency compared to bare samples.


2011 ◽  
Vol 236-238 ◽  
pp. 2076-2079
Author(s):  
Yan Rong Sun ◽  
Tao Fan ◽  
Yong Huang ◽  
Li Guo Ma ◽  
Feng Liu

The introduction of biomineralization was coupled with the co-precipitation synthesis process of nano-hydroxyapatite with the addition of chondroitin sulfate as a template agent. The effect of a variety of processing conditions on the properties of final hydroxyapatite (HA) product was investigated by orthogonal design. The ratio of calcium to phosphorus was detected by chemical analysis, the phase composition was evaluated by X-ray diffraction (XRD), and the powder morphology was characterized by transmission electron microscope (TEM). The process scheme, moreover, was optimized by the analysis of four aspects which may have different extent of influence on product properties. It can be concluded from the results that product properties can be affected remarkably by the content of chondroitin sulfate and the pH value of reactant, less remarkably by the reaction temperature and slightly by the reaction time.


2021 ◽  
Author(s):  
shumin wang ◽  
Ao Guan ◽  
Jiahan Wang ◽  
Xiaofang Fu ◽  
Xiang Guo ◽  
...  

Abstract Manganese dioxide (α-MnO2) nanorods with diameters of about 5-15 nm and lengths of 100-150 nm were synthesized by a simple co-precipitation method. XRD, TEM, HRTEM, SAED and XPS were used to analyze the crystallographic information, microstructure and chemical bonding of the as-prepared sample. The α-MnO2 nanorod exhibited a high efficiency and rapid removal rate of rhodamine B (RhB), which reached about 97.5% within 10 min when pH=4 (and pH=6.6) and 97.7% within 50 min when pH = 9 in the presence of H2O2. The results also indicated that a lower pH value is conducive to the movement of the characteristic peak and the attenuation of the intensity of the characteristic peak of RhB dye. Then a possible catalytic mechanism was revealed. Moreover, the α-MnO2 nanorod exhibits an excellent recyclability and catalytic stability. This research indicates that α-MnO2 nanorods have a potential application in practical dye pollutant treatment.


2013 ◽  
Vol 643 ◽  
pp. 104-107
Author(s):  
Yi Jie Gu ◽  
Qing Gang Zhang ◽  
Yun Bo Chen ◽  
Hong Quan Liu ◽  
Yan Min Wang ◽  
...  

The thermodynamic analysis of Ni2+-Mn2+-NH3-OH--H2O in co-precipitation system was carried out, and the precursor Ni1/2Mn1/2(OH)2 was prepared by hydroxide co-precipitation method. The analysis showed that the best pH value of mixed solution is 11 and the ammonia concentration is 0.4 mol/L, when NaOH is precipitating agent and ammonia is chelating agent. When the pH value is 11, the SEM images confirm that the morphology of Ni1/2Mn1/2(OH)2 is the best.


2014 ◽  
Vol 599-601 ◽  
pp. 118-123
Author(s):  
Xie Bin Zhu ◽  
Jing Chen ◽  
Zhong Jia Huang

Antimony doped tin oxide (ATO) Nano powder was prepared by co-precipitation method, selecting SnCl4 • 5H2O and SbCl3 as the main raw material, citric acid as dispersant, ammonia solution (1:3) as precipitant, which was characterized, analyzed and tested by XRD, SEM, and digital conductivity meter. The optimum technological condition is that evenly-scattered powder whose crystalline structure is rutile, particle is sphere, size is about 10nm and conductivity is 1.32 ×102 µs/cm can be obtained when the reaction temperature is 60°C, Sb doping ratio is 10%, pH value is 2, calcinations temperature are 600°C and calcinations time are 2 hours.


Sign in / Sign up

Export Citation Format

Share Document