The Thermodynamic Analysis of Ni1/2Mn1/2(OH)2 Prepared by Hydroxide Co-Precipitation Method

2013 ◽  
Vol 643 ◽  
pp. 104-107
Author(s):  
Yi Jie Gu ◽  
Qing Gang Zhang ◽  
Yun Bo Chen ◽  
Hong Quan Liu ◽  
Yan Min Wang ◽  
...  

The thermodynamic analysis of Ni2+-Mn2+-NH3-OH--H2O in co-precipitation system was carried out, and the precursor Ni1/2Mn1/2(OH)2 was prepared by hydroxide co-precipitation method. The analysis showed that the best pH value of mixed solution is 11 and the ammonia concentration is 0.4 mol/L, when NaOH is precipitating agent and ammonia is chelating agent. When the pH value is 11, the SEM images confirm that the morphology of Ni1/2Mn1/2(OH)2 is the best.

2021 ◽  
Vol 13 (5) ◽  
pp. 812-819
Author(s):  
Mohamed Helmi Hadj Alouane ◽  
Faheem Ahmed ◽  
Nermin Adel Hussein El Semary ◽  
Munirah F. Aldayel ◽  
Fatimah H. Alhaweti ◽  
...  

In this work, carbon-based nanomaterials including; carbon nanotubes (CNT) and graphene were combined with biofertilisers and tested their impact on germination of Hordeum vulgare. The interaction between nanomaterials and biofertilisers was analysed. Scanning electron microscopy (SEM) images revealed that the surface of algal cells was covered with carbon nanomaterials including graphene and CNTs. Raman studies showed the characteristic band of graphene, CNTs and Algal cells. The combination of carbon nanomaterials with biofertilizers resulted in significantly better growth than with nanomaterials individually. To prepare a more effective superfertiliser, zinc ferrites (ZnFe2O4) nanoparticles were added to the nanomaterials-biofertilisers combination. These zinc ferrites nanofertilisers had a size ranging from 8–12 nm and were prepared by co-precipitation method and used at two different doses. The results showed that the growth parameters were increased most significantly with addition of 0.25 ml of ZnFe2O4 nanoparticles. Increasing the dose caused a less increase in growth parameters. These results indicated that increase in growth parameters was dose-dependent. These results demonstrated a great promise for novel formulation of superfertiliser that significantly enhanced plant growth without pollution or excessive use of harmful chemicals for better food security and environmental sustainability.


2015 ◽  
Vol 1094 ◽  
pp. 15-19
Author(s):  
Lin Xia Yan ◽  
Sen Lin Tian ◽  
Qiu Lin Zhang

Cu-Al catalysts were synthesized by the co-precipitation method to study hydrolysis of hydrogen cyanide. During the synthesis, the impact of Cu/Al molar ratio, pH value and calcination temperature was investigated and the best synthesis condition was found. The results indicate that the remove of hydrogen cyanide first increases and then decreases with increasing Cu/Al molar ratio, pH value and calcination temperature, which reaches the maxima and remains above 95% at 360 min when Cu/Al molar ratio is 2:1, pH value is approximately 8.0 and calcination temperature is 400°C around. The analysis of X-ray diffraction (XRD) shows that Cu content is the main influence factor at Cu/Al molar ratio below 2:1 whereas crystallinity of catalysts is the key factor at Cu/Al molar ratio above 2:1.


2013 ◽  
Vol 756 ◽  
pp. 74-79 ◽  
Author(s):  
Bashiru Kayode Sodipo ◽  
Azlan Abdul Aziz

Superparamagnetic iron oxide nanoparticles (SPION) of sizes 5 to10 nm were synthesized by the co-precipitation method. They are coated with silica nanoparticles using sonication method. The SPION was produced under the optimum pH of 10, peptized in acidic medium and redispersed in water. The silica nanoparticles were produced through the Stöbermethod. Sonochemical coating of silica nanoparticle on the SPION was successfulat a pH value lower than 5. Otherwise, at higher pH value (but lower than point zero charge (PZC)), the SPION were found to be unstable. Fast hydrolysis of triethoxyvinylsilane(TEVS) shows that silica forms its own particles without coating onto the surfaces of the SPION. Under optimized experimental condition, sonochemical method of coating silica nanoparticles onto the SPION can be considered as an alternative for effective and prompt method that rely mainly on pH of the suspension.


2011 ◽  
Vol 236-238 ◽  
pp. 2076-2079
Author(s):  
Yan Rong Sun ◽  
Tao Fan ◽  
Yong Huang ◽  
Li Guo Ma ◽  
Feng Liu

The introduction of biomineralization was coupled with the co-precipitation synthesis process of nano-hydroxyapatite with the addition of chondroitin sulfate as a template agent. The effect of a variety of processing conditions on the properties of final hydroxyapatite (HA) product was investigated by orthogonal design. The ratio of calcium to phosphorus was detected by chemical analysis, the phase composition was evaluated by X-ray diffraction (XRD), and the powder morphology was characterized by transmission electron microscope (TEM). The process scheme, moreover, was optimized by the analysis of four aspects which may have different extent of influence on product properties. It can be concluded from the results that product properties can be affected remarkably by the content of chondroitin sulfate and the pH value of reactant, less remarkably by the reaction temperature and slightly by the reaction time.


2012 ◽  
Vol 581-582 ◽  
pp. 525-528
Author(s):  
Jia Feng Zhang ◽  
Bao Zhang ◽  
Xue Yi Guo ◽  
He Zhang Chen ◽  
Jian Long Wang ◽  
...  

The LiFe0.98Mn0.02PO4/C was synthesized by spray-drying and low temperature reduction route using FePO4•2H2O as precursor, which was prepared by a simple co-precipitation method. The LiFe0.98Mn0.02PO4/C sample was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical measurements. The XRD analysis and SEM images show that sample has the good ordered structure and spherical particle. The charge-discharge tests demonstrate that the powder has the better electrochemical properties, with an initial discharge capacity of 162.1 mAh•g−1 and 155.8 mAh•g−1 at current density of 0.1 C and 1C, respectively. The capacity retention reaches 99.4% after 100 cycles at 1C.


2021 ◽  
Author(s):  
shumin wang ◽  
Ao Guan ◽  
Jiahan Wang ◽  
Xiaofang Fu ◽  
Xiang Guo ◽  
...  

Abstract Manganese dioxide (α-MnO2) nanorods with diameters of about 5-15 nm and lengths of 100-150 nm were synthesized by a simple co-precipitation method. XRD, TEM, HRTEM, SAED and XPS were used to analyze the crystallographic information, microstructure and chemical bonding of the as-prepared sample. The α-MnO2 nanorod exhibited a high efficiency and rapid removal rate of rhodamine B (RhB), which reached about 97.5% within 10 min when pH=4 (and pH=6.6) and 97.7% within 50 min when pH = 9 in the presence of H2O2. The results also indicated that a lower pH value is conducive to the movement of the characteristic peak and the attenuation of the intensity of the characteristic peak of RhB dye. Then a possible catalytic mechanism was revealed. Moreover, the α-MnO2 nanorod exhibits an excellent recyclability and catalytic stability. This research indicates that α-MnO2 nanorods have a potential application in practical dye pollutant treatment.


2018 ◽  
Vol 6 (1) ◽  
pp. 338-346 ◽  
Author(s):  
Mohammad S. Al-Ajely ◽  
Kareema M. Ziadan ◽  
Rafed. M. Al-Bader

The aim of the present study was to prepare a calcium fluoride (CaF2NP) Nano particle which is used in dental composites as dental filling compo glass type. CaF2 Nano powders were prepared using a Co-precipitation method using binary liquid. Crystal Structural characteristics and Elemental composition of (CaF2NP) Nanoparticles were predicted by X-ray diffraction (XRD), which showed crystalline peaks of   this material. Elemental composition was obtained from EDX analysis.  Morphology and diameters of the Nano fibers were studied by scanning electron Microscope (SEM). The size of the particles was also measured from SEM images about 58 ± 21 nm.


2020 ◽  
Vol 16 ◽  
Author(s):  
Imran Aslam ◽  
M. Saqib ◽  
M. W. Iqbal ◽  
Rajender Boddula ◽  
Tariq Mahmood ◽  
...  

Background: Environmental pollution has become a worldwide problem. In this regard, decontamination of wastewater and removal of organic pollutants from environment by photocatalysis has emerged as one of the most promising techniques from last few decades. Objective : In order to degrade the harmful pollutants from wastewater, highly efficient non-toxic Fe2(WO4)3 photocatalyst will be synthesized via co precipitation method. The photocatalytic activity of the as-synthesized material will be examined by degrading methylene blue (MB) under various conditions. Methods: For this purpose, different experimental parameters such as catalyst load, model compound concentration, H2O2 percentage and pH value were adjusted for excellent degradation of MB, and response surface methodology (RSM) along with central composite design (CCD) as adequate model was employed for optimization process. Results: The experimental results revealed that 1.2 g/L of catalyst load, 10 g/L for dye concentration, 0.5 percentage of H2O2 and pH 7 are found to be the optimized values for the aforesaid parameters. The optimized values led to 93% degradation of MB under UV light exposure. In addition, toxicological studies have been analysed by using various bioassays for both untreated and treated samples and a conspicuous reduction (69.12%) in the toxicity level was observed. Conclusion: The study signifies that this method is useful for reclamation of water making it useful for industry and irrigation.


2019 ◽  
Vol 9 (2) ◽  
pp. 278-284
Author(s):  
Mohammad Sabet ◽  
Marziyeh Mohammadi ◽  
Fatemeh Googhari

Background: Due to unique chemical and physical properties and potential application in many fields, nanostructured materials have attracted many attentions. Cadmium sulfide (CdS) is a semiconductor that has a wide band gap of 2.42 eV at room temperature and can be served in solar cells and photoluminescence devices. Cadmium sulfide (CdS) is a kind of attractive semiconductor material, and it is now widely used for optoelectronic applications. CdS nano and microstructures can be synthesized via different chemical methods such as microwave-solvothermal synthesis, surfactant-ligand coassisting solvothermal method and hydrothermal route. Also different morphologies of this semiconductor such as dendrites, nanorods, sphere-like, flakes, nanowires, flower-like shape triangular and hexagonal plates, were synthesized. Methods: To synthesis of the nanocomposite, a simple co-precipitation method was served. In briefly, 0.1 g of Pb(NO3)2 was dissolved in the distilled water (Solution 1). Also different aqueous solutions were made from dissolving different mole ratio of Cd(NO3)2.6H2O respect to the lead source in the water (Solution 2). Two solutions were mixed together under vigorous stirring and then S2- solution (0.02 g thiourea in the water) was added to the Pb2+/Cd2+ solution. After that 0.1 g of CTAB as surfactant was added to the final solution. Finally to the synthesis of both sulfide and oxide nanostructures, NaOH solution was added to the prepared solution to obtain pH= 10. Distilled water and absolute ethanol were used to wash the obtained precipitate and then it dried at 80 °C for 8 h. Results: From the XRD pattern it was found that the peaks placed at 24.9°, 27°, 44.1°, 48°, 52°, 54°, 57.8°, 66.8°, 71.2° are associated to CdS compound with hexagonal phase (JCPDS=00-001-0780) that belong to (100), (002), (110), (103), (112), (201), (202), (203), (211) Miller indices respectively. The Other peaks belong to PbS with hexagonal phase (JCPDS=01-078-1897), and CdO with cubic phase (JCPDS=00-001-1049). From SEM images, it was found by choosing the mole ratio to 1:1, very small and uniform particles were achieved. By increasing Pb2+/Cd2+ mole ratio to 1:2, very tiny particles aggregated together were achieved. Conclusion: The results showed that the product can adsorb extra 80% of heavy metal ions from the water. So it can be said that the nanocomposite can be used in the water treatment due to its high photocatalytic and surface adsorption activities. In other words, it can remove heavy metals from the water and also decompose organic pollutions.


2014 ◽  
Vol 599-601 ◽  
pp. 118-123
Author(s):  
Xie Bin Zhu ◽  
Jing Chen ◽  
Zhong Jia Huang

Antimony doped tin oxide (ATO) Nano powder was prepared by co-precipitation method, selecting SnCl4 • 5H2O and SbCl3 as the main raw material, citric acid as dispersant, ammonia solution (1:3) as precipitant, which was characterized, analyzed and tested by XRD, SEM, and digital conductivity meter. The optimum technological condition is that evenly-scattered powder whose crystalline structure is rutile, particle is sphere, size is about 10nm and conductivity is 1.32 ×102 µs/cm can be obtained when the reaction temperature is 60°C, Sb doping ratio is 10%, pH value is 2, calcinations temperature are 600°C and calcinations time are 2 hours.


Sign in / Sign up

Export Citation Format

Share Document