Reactive Metabolites: Generation and Estimation with Electrochemistry Based Analytical Strategy as an Emerging Screening Tool

2020 ◽  
Vol 16 (7) ◽  
pp. 811-825
Author(s):  
Maria Bandookwala ◽  
Kavya Sri Nemani ◽  
Bappaditya Chatterjee ◽  
Pinaki Sengupta

Background: Analytical scientists have constantly been in search for more efficient and economical methods for drug simulation studies. Owing to great progress in this field, there are various techniques available nowadays that mimic drug metabolism in the hepatic microenvironment. The conventional in vitro and in vivo studies pose inherent methodological drawbacks due to which alternative analytical approaches are devised for different drug metabolism experiments. Methods: Electrochemistry has gained attention due to its benefits over conventional metabolism studies. Because of the protein binding nature of reactive metabolites, it is difficult to identify them directly after formation, although the use of trapping agents aids in their successful identification. Furthermore, various scientific reports confirmed the successful simulation of drug metabolism studies by electrochemical cells. Electrochemical cells coupled with chromatography and mass spectrometry made it easy for direct detection of reactive metabolites. In this review, an insight into the application of electrochemical techniques for metabolism simulation studies has been provided. The sole use of electrochemical cells, as well as their setups on coupling to liquid chromatography and mass spectrometry has been discussed. The importance of metabolism prediction in early drug discovery and development stages along with a brief overview of other conventional methods has also been highlighted. Conclusion: To the best of our knowledge, this is the first article to review the electrochemistry based strategy for the analysis of reactive metabolites. The outcome of this ‘first of its kind’ review will significantly help the researchers in the application of electrochemistry based bioanalysis for metabolite detection.

2015 ◽  
Vol 27 (4) ◽  
pp. 621 ◽  
Author(s):  
Christina R. Ferreira ◽  
Alan K. Jarmusch ◽  
Valentina Pirro ◽  
Clint M. Alfaro ◽  
Andres F. González-Serrano ◽  
...  

Lipids play fundamental roles in mammalian embryo preimplantation development and cell fate. Triacylglycerol accumulates in oocytes and blastomeres as lipid droplets, phospholipids influence membrane functional properties, and essential fatty acid metabolism is important for maintaining the stemness of cells cultured in vitro. The growing impact that lipids have in the field of developmental biology makes analytical approaches to analyse structural information of great interest. This paper describes the concept and presents the results of lipid profiling by mass spectrometry (MS) of oocytes and preimplantation embryos, with special focus on ambient ionisation. Based on our previous experience with oocytes and embryos, we aim to convey that ambient MS is also valuable for stem cell differentiation analysis. Ambient ionisation MS allows the detection of a wide range of lipid classes (e.g. free fatty acids, cholesterol esters, phospholipids) in single oocytes, embryos and cell pellets, which are informative of in vitro culture impact, developmental and differentiation stages. Background on MS principles, the importance of underused MS scan modes for structural analysis of lipids, and statistical approaches used for data analysis are covered. We envisage that MS alone or in combination with other techniques will have a profound impact on the understanding of lipid metabolism, particularly in early embryo development and cell differentiation research.


2009 ◽  
Vol 24 (7) ◽  
pp. 744-751 ◽  
Author(s):  
Gary N. W. Leung ◽  
Francis P. W. Tang ◽  
Terence S. M. Wan ◽  
Colton H. F. Wong ◽  
Kenneth K. H. Lam ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 635
Author(s):  
Katyeny Manuela da Silva ◽  
Elias Iturrospe ◽  
Chloe Bars ◽  
Dries Knapen ◽  
Steven Van Cruchten ◽  
...  

Metabolomics has achieved great progress over the last 20 years, and it is currently considered a mature research field. As a result, the number of applications in toxicology, biomarker, and drug discovery has also increased. Toxicometabolomics has emerged as a powerful strategy to provide complementary information to study molecular-level toxic effects, which can be combined with a wide range of toxicological assessments and models. The zebrafish model has gained importance in recent decades as a bridging tool between in vitro assays and mammalian in vivo studies in the field of toxicology. Furthermore, as this vertebrate model is a low-cost system and features highly conserved metabolic pathways found in humans and mammalian models, it is a promising tool for toxicometabolomics. This short review aims to introduce zebrafish researchers interested in understanding the effects of chemical exposure using metabolomics to the challenges and possibilities of the field, with a special focus on toxicometabolomics-based mass spectrometry. The overall goal is to provide insights into analytical strategies to generate and identify high-quality metabolomic experiments focusing on quality management systems (QMS) and the importance of data reporting and sharing.


Author(s):  
Rahul Vijay Kapoore ◽  
Seetharaman Vaidyanathan

Metabolome analyses are a suite of analytical approaches that enable us to capture changes in the metabolome (small molecular weight components, typically less than 1500 Da) in biological systems. Mass spectrometry (MS) has been widely used for this purpose. The key challenge here is to be able to capture changes in a reproducible and reliant manner that is representative of the events that take place in vivo . Typically, the analysis is carried out in vitro , by isolating the system and extracting the metabolome. MS-based approaches enable us to capture metabolomic changes with high sensitivity and resolution. When developing the technique for different biological systems, there are similarities in challenges and differences that are specific to the system under investigation. Here, we review some of the challenges in capturing quantitative changes in the metabolome with MS based approaches, primarily in microbial and mammalian systems. This article is part of the themed issue ‘Quantitative mass spectrometry’.


2006 ◽  
Vol 50 (3) ◽  
pp. 835-840 ◽  
Author(s):  
Margarita Meléndez ◽  
Raúl Blanco ◽  
Wilfredo Delgado ◽  
Rosario García ◽  
Jorge Santana ◽  
...  

ABSTRACT The in vivo and in vitro determination of significant intracellular stavudine (d4T) triphosphate (d4TTP) concentrations in human immunodeficiency virus (HIV)-infected subjects and NS-1 cells treated with zidovudine (ZDV) has recently been reported. This study was conducted to corroborate these findings with in vivo samples from HIV-infected subjects taking ZDV and in vitro CEMSS cells incubated with different ZDV concentrations. Previously, we have reported on our validated high-performance liquid chromatography coupled with tandem mass spectrometry methodology for the simultaneous determination of d4TTP, lamivudine triphosphate, and ZDV triphosphate (ZDVTP) concentrations. Using this methodology, we monitored the d4TTP concentration in more than 100 samples from HIV-infected subjects treated with d4T. In addition, we simultaneously monitored the concentrations of d4TTP and ZDVTP in more than 500 samples from HIV-infected individuals who were taking ZDV. Finally, we performed in vitro studies by incubating CEMSS cells with 10 μM, 50 μM, and 100 μM ZDV and monitored the formation of d4TTP at 24 and 48 h. We could measure d4TTP concentrations from HIV-infected individuals with a limit of quantitation (LOQ) of 2.7 fmol/106 cells (total injection, 54 fmol). In the in vivo studies, we measured the d4TTP concentrations among patients receiving d4T treatment, but the samples from patients taking ZDV did not provide d4TTP concentrations above the LOQ. Furthermore, in vitro samples did not produce any signal for d4TTP, despite the detection of substantial ZDVTP concentrations in CEMSS cells. Thus, contrary to the previous report, we found no evidence for the in vivo or in vitro transformation of ZDVTP to d4TTP in HIV-infected subjects or CEMSS cells.


Sign in / Sign up

Export Citation Format

Share Document