Recent advances on bipolar electrochemiluminescence in analytical application

2021 ◽  
Vol 17 ◽  
Author(s):  
Huanhuan Xing ◽  
Jing Li ◽  
Erkang Wang

Background: Bipolar electrode (BPE), as an immersed electrical conductor in the electrolyte, can be polarized into cathodic and anodic poles under a sufficient electric field without direct contact, which affords a unique way to promote asymmetrical reactions at two poles. Up to date, bipolar electrochemistry has been widely used in the preparation of Janus materials, the fabrication of sensing/screening platforms, target focusing, and microswimmers. However, the wireless feature of BPE makes the monitoring of Faradaic current difficult. Electrochemiluminescence (ECL), the light emission via an electrochemical reaction, matches the feature of bipolar electrochemistry and is widely adopted to achieve the recording of the Faradaic current flowing through the BPE. The objective of the present review aims to demonstrate the most recent advances of analytical applications (2016-2020) in combination with the high sensitive ECL as the output. Methods: Due to the difficulty in recording the Faradaic current flowing the BPE, the ECL, as a simple, sensitive and detectable signal-out, has become a popular method for analytical application based on the BPE. This review mainly summarizes the recent research on BPE/ECL based on the configuration and sensing principle of BPE designed in the ECL analysis. Results: The various sensors based on the BPE/ECL have been proposed for the electroactive targets and the bio-relevant molecules without the electroactivity by different ingenious designs. Besides, the microelectrode array and ultra-microelectrode (UME) array have also been applied in the BPE/ECL field to achieve the high temporal-spatial resolution imaging of the sample molecules based on the BPE microelectrode array. Conclusion: The combination of BPE and ECL provides a simple, portable, and versatile sensor strategy for various targets due to the unique advantages of BPE and ECL, and easily recognizes the fast, accurate, and point-of-care diagnostics of numerous diseases. Though the BPE/ECL analysis has many merits such as high-throughput, excellent sensitivity, high spatial-temporal resolution, the sensitive and commercial ECL analysis based on the BPE is still difficult to conduct and the analysis research on BPE/ECL is still in the early stage.

2020 ◽  
Vol 5 (1) ◽  
pp. 49-66 ◽  
Author(s):  
Léonard Bezinge ◽  
Akkapol Suea-Ngam ◽  
Andrew J. deMello ◽  
Chih-Jen Shih

This account reviews the major amplification strategies utilizing nanomaterials in electrochemical biosensing for robust and sensitive molecular diagnostics.


Micromachines ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 532 ◽  
Author(s):  
Jinjin Shen ◽  
Ting Zhou ◽  
Ru Huang

Pathogenic bacterial contamination greatly threats human health and safety. Rapidly biosensing pathogens in the early stage of infection would be helpful to choose the correct drug treatment, prevent transmission of pathogens, as well as decrease mortality and economic losses. Traditional techniques, such as polymerase chain reaction and enzyme-linked immunosorbent assay, are accurate and effective, but are greatly limited because they are complex and time-consuming. Electrochemiluminescence (ECL) biosensors combine the advantages of both electrochemical and photoluminescence analysis and are suitable for high sensitivity and simple pathogenic bacteria detection. In this review, we summarize recent advances in ECL sensors for pathogenic bacteria detection and highlight the development of paper-based ECL platforms in point of care diagnosis of pathogens.


2021 ◽  
Vol 178 ◽  
pp. 112995
Author(s):  
Jasmeen Kaur ◽  
Rohit Srivastava ◽  
Vivek Borse

ACS Nano ◽  
2021 ◽  
Author(s):  
Enrique Valera ◽  
Aaron Jankelow ◽  
Jongwon Lim ◽  
Victoria Kindratenko ◽  
Anurup Ganguli ◽  
...  

2020 ◽  
Vol 37 (12) ◽  
pp. 839.1-839
Author(s):  
Dominic Craver ◽  
Aminah Ahmad ◽  
Anna Colclough

Aims/Objectives/BackgroundRapid risk stratification of patients is vital for Emergency Department (ED) streaming during the COVID-19 pandemic. Ideally, patients should be split into red (suspected/confirmed COVID-19) and green (non COVID-19) zones in order to minimise the risk of patient-to-patient and patient-to-staff transmission. A robust yet rapid streaming system combining clinician impression with point-of-care diagnostics is therefore necessary.Point of care ultrasound (POCUS) findings in COVID-19 have been shown to correlate well with computed tomography (CT) findings, and it therefore has value as a front-door diagnostic tool. At University Hospital Lewisham (a district general hospital in south London), we recognised the value of early POCUS and its potential for use in patient streaming.Methods/DesignWe developed a training programme, ‘POCUS for COVID’ and subsequently integrated POCUS into streaming of our ED patients. The training involved Zoom lectures, a face to face practical, a 10 scan sign off process followed by a final triggered assessment. Patient outcomes were reviewed in conjunction with their scan reports.Results/ConclusionsCurrently, we have 21 ED junior doctors performing ultrasound scans independently, and all patients presenting to our department are scanned either in triage or in the ambulance. A combination of clinical judgement and scan findings are used to stream the patient to an appropriate area.Service evaluation with analysis of audit data has found our streaming to be 94% sensitive and 79% specific as an indicator of COVID 19. Further analysis is ongoing.Here we present both the structure of our training programme and our integrated streaming pathway along with preliminary analysis results.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1532
Author(s):  
Jeffrey Yim ◽  
Olivia Yau ◽  
Darwin F. Yeung ◽  
Teresa S. M. Tsang

Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations in the galactosidase A (GLA) gene that result in deficient galactosidase A enzyme and subsequent accumulation of glycosphingolipids throughout the body. The result is a multi-system disorder characterized by cutaneous, corneal, cardiac, renal, and neurological manifestations. Increased left ventricular wall thickness represents the predominant cardiac manifestation of FD. As the disease progresses, patients may develop arrhythmias, advanced conduction abnormalities, and heart failure. Cardiac biomarkers, point-of-care dried blood spot testing, and advanced imaging modalities including echocardiography with strain imaging and magnetic resonance imaging (MRI) with T1 mapping now allow us to detect Fabry cardiomyopathy much more effectively than in the past. While enzyme replacement therapy (ERT) has been the mainstay of treatment, several promising therapies are now in development, making early diagnosis of FD even more crucial. Ongoing initiatives involving artificial intelligence (AI)-empowered interpretation of echocardiographic images, point-of-care dried blood spot testing in the echocardiography laboratory, and widespread dissemination of point-of-care ultrasound devices to community practices to promote screening may lead to more timely diagnosis of FD. Fabry disease should no longer be considered a rare, untreatable disease, but one that can be effectively identified and treated at an early stage before the development of irreversible end-organ damage.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Danielle M. Nash ◽  
Zohra Bhimani ◽  
Jennifer Rayner ◽  
Merrick Zwarenstein

Abstract Background Learning health systems have been gaining traction over the past decade. The purpose of this study was to understand the spread of learning health systems in primary care, including where they have been implemented, how they are operating, and potential challenges and solutions. Methods We completed a scoping review by systematically searching OVID Medline®, Embase®, IEEE Xplore®, and reviewing specific journals from 2007 to 2020. We also completed a Google search to identify gray literature. Results We reviewed 1924 articles through our database search and 51 articles from other sources, from which we identified 21 unique learning health systems based on 62 data sources. Only one of these learning health systems was implemented exclusively in a primary care setting, where all others were integrated health systems or networks that also included other care settings. Eighteen of the 21 were in the United States. Examples of how these learning health systems were being used included real-time clinical surveillance, quality improvement initiatives, pragmatic trials at the point of care, and decision support. Many challenges and potential solutions were identified regarding data, sustainability, promoting a learning culture, prioritization processes, involvement of community, and balancing quality improvement versus research. Conclusions We identified 21 learning health systems, which all appear at an early stage of development, and only one was primary care only. We summarized and provided examples of integrated health systems and data networks that can be considered early models in the growing global movement to advance learning health systems in primary care.


Diagnostics ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Meysam Rezaei ◽  
Sajad Razavi Bazaz ◽  
Sareh Zhand ◽  
Nima Sayyadi ◽  
Dayong Jin ◽  
...  

The recent outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated serious respiratory disease, coronavirus disease 2019 (COVID-19), poses a major threat to global public health. Owing to the lack of vaccine and effective treatments, many countries have been overwhelmed with an exponential spread of the virus and surge in the number of confirmed COVID-19 cases. Current standard diagnostic methods are inadequate for widespread testing as they suffer from prolonged turn-around times (>12 h) and mostly rely on high-biosafety-level laboratories and well-trained technicians. Point-of-care (POC) tests have the potential to vastly improve healthcare in several ways, ranging from enabling earlier detection and easier monitoring of disease to reaching remote populations. In recent years, the field of POC diagnostics has improved markedly with the advent of micro- and nanotechnologies. Due to the COVID-19 pandemic, POC technologies have been rapidly innovated to address key limitations faced in existing standard diagnostic methods. This review summarizes and compares the latest available POC immunoassay, nucleic acid-based and clustered regularly interspaced short palindromic repeats- (CRISPR)-mediated tests for SARS-CoV-2 detection that we anticipate aiding healthcare facilities to control virus infection and prevent subsequent spread.


Sign in / Sign up

Export Citation Format

Share Document