Synthesis of Antibacterial Oxide of Copper for Potential Application as Antifouling Agent

2021 ◽  
Vol 17 ◽  
Author(s):  
Neeru Bhagat ◽  
Brajesh Pandey

Background: Copper oxide nanoparticles have become very important due to their numerous applications and ease of synthesis. Out of the two oxides of copper, cuprous oxide exhibits better antibacterial, antimicrobial, and antifouling properties. Objective: The study aimed to find a way of synthesizing stable and eco-friendly oxide of copper and test it for antibacterial properties. Methods: The precipitation method was employed for the synthesis of nanoparticles. NaOH and Moringa Oleifera leaves extract were used as the reducing agents to obtain two different sets of samples. Results: Good phases of copper oxides were formed for all the samples (cuprous as well as cupric oxides). SEM studies showed that the structure of cupric oxide (CuO), formed at higher calcination temperatures, is well defined when synthesized using a hybrid method. Conclusion: Our studies indicate that the hybrid method of synthesis used by us is a more effective and quicker way of synthesizing cuprous oxide (Cu2O), which exhibits higher antibacterial properties as compared to cupric oxide (CuO).

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 586
Author(s):  
Pitso Tshireletso ◽  
Collins Njie Ateba ◽  
Omolola E. Fayemi

Green synthesis of nanoparticles using citrus peel extracts is known to be environmentally friendly and non-toxic when compared to chemical methods. In this study, different citrus peel extracts obtained with the solvents acetone and distilled water were used to synthesize copper oxide nanoparticles (CuONPs). The nanoparticles were characterized using cyclic voltammetry, ultraviolet-visible spectroscopy, energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The absorption spectrum of CuONPs prepared with acetone exhibited characteristic peaks at the wavelengths between 280–293 nm, while those with distilled water had peaks at 290 nm. The acetone-synthesized CuONPs were spherical while those produced using distilled water were rod-shaped. Based on EDS, the analysis revealed a trace spectrum of CuO nanoparticles with different weight compositions that varied with the type of citrus peel and solvent used. FTIR measurements were carried out in the range of 500–4000 cm−1 for citrus peel extract mediated CuONPs. The spectra had five vibrations occurring at approximately 473, 477, 482, 607 and 616 cm−1 for all samples, which can be attributed to the vibrations of CuO, validating the formation of highly pure CuONPs.


2018 ◽  
Vol 15 (2) ◽  
pp. 209-213 ◽  
Author(s):  
Sathish Mohan Botsa ◽  
Ramadevi Dharmasoth ◽  
Keloth Basavaiah

Background: During past two decades, functional nanomaterials have received great attention for many technological applications such as catalysis, energy, environment, medical and sensor due to their unique properties at nanoscale. However, copper oxide nanoparticles (NPs) such as CuO and Cu2O have most widely investigated for many potential applications due to their wide bandgap, high TC, high optical absorption and non-toxic in nature. The physical and chemical properties of CuO and Cu2O NPs are critically depending on their size, morphology and phase purity. Therefore, lots of efforts have been done to prepare phase CuO and Cu2O NPs with different morphology and size. Method: The synthesis of cupric oxide (CuO) and cuprous oxide (Cu2O) NPs using copper acetate as a precursor by varying the reducing agents such as hydrazine sulphate and hydrazine hydrate via sonochemical method. The phase, morphology and crystalline structure of a prepared CuO and Cu2O NPs were investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray (EDS) and UV-Visible Diffuse reflectance spectroscopy (DRS). Results: The phase of NPs was tuned as a function of reducing agents.XRD patterns confirmed the formation of pure phase crystalline CuO and Cu2O NPs. FTIR peak at 621 cm-1 confirmed Cu(I)-O vibrations, while CuO vibrations confirmed by the presence of two peaks at 536 and 586 cm-1. Further investigation was done by Raman, which clearly indicates the presence of peaks at 290, 336, 302 cm-1 and 173, 241 cm-1 for CuO and Cu2O NPs, respectively. The FESEM images revealed rod-like morphology of the CuO NPs while octahedral like shape for Cu2O NPs. The presence of elemental Cu and O in stoichiometric ratios in EDS spectra confirms the formation of both CuO and Cu2O NPs. In summary, CuO and Cu2O NPs were successfully synthesized by a sonochemical method using copper acetate as a precursor at different reducing agents. The bandgap of CuO and Cu2O NPs was 2.38 and 1.82, respectively. Furthermore, the phase purity critically depends on reducing agents.


2018 ◽  
Vol 83 (1) ◽  
pp. 10402
Author(s):  
Janusz Typek ◽  
Nikos Guskos ◽  
Grzegorz Zolnierkiewicz ◽  
Zofia Lendzion-Bielun ◽  
Anna Pachla ◽  
...  

Nanocomposites of Fe3O4 nanoparticles (NPs) impregnated with silver NPs display antibacterial properties and may be used in water treatment as disinfection agent. Three samples were synthesized: Fe3O4 NPs obtained by the precipitation method and additionally two samples with added silver NPs with mass ratio of Ag:Fe3O4 equal to 1:100 and 2:100. Magnetic properties of these samples were studied by SQUID magnetometry (in temperature range 2–300 K and magnetic fields up to 70 kG) and magnetic resonance technique at RT. Temperature dependence of dc susceptibility revealed the blocking temperature close to RT in all three samples and allowed to determine the presence of single or multi-mode distribution of NP sizes in a particular sample. Isothermal magnetisation measurements showed that the presence of silver NPs, especially those with smaller sizes, decreases the saturation magnetisation. The shape of ferromagnetic loop registered at T = 2 K was used to discuss the sizes of NP magnetic clusters in our samples. Conclusions obtained from analysis of the ferromagnetic resonance spectra were consistent with the propositions based on the magnetometric studies.


2018 ◽  
Vol 29 (20) ◽  
pp. 17622-17629 ◽  
Author(s):  
Sami AlYahya ◽  
B. Jansi Rani ◽  
G. Ravi ◽  
R. Yuvakkumar ◽  
A. Arun ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Panya Khaenamkaew ◽  
Dhonluck Manop ◽  
Chaileok Tanghengjaroen ◽  
Worasit Palakawong Na Ayuthaya

The electrical properties of tin dioxide (SnO2) nanoparticles induced by low calcination temperature were systematically investigated for gas sensing applications. The precipitation method was used to prepare SnO2 powders, while the sol-gel method was adopted to prepare SnO2 thin films at different calcination temperatures. The characterization was done by X-ray diffraction, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The samples were perfectly matched with the rutile tetragonal structure. The average crystallite sizes of SnO2 powders were 45 ± 2, 50 ± 2, 62 ± 2, and 65 ± 2 nm at calcination temperatures of 300, 350, 400, and 450°C, respectively. SEM images and AFM topographies showed an increase in particle size and roughness with the rise in calcination temperature. The dielectric constant decreased with the increase in the frequency of the applied signals but increased on increasing calcination temperature. By using the UV-Vis spectrum, the direct energy bandgaps of SnO2 thin films were found as 4.85, 4.80, 4.75, and 4.10 eV for 300, 350, 400, and 450°C, respectively. Low calcination temperature as 300°C allows smaller crystallite sizes and lower dielectric constants but increases the surface roughness of SnO2, while lattice strain remains independent. Thus, low calcination temperatures of SnO2 are promising for electronic devices like gas sensors.


2021 ◽  
Author(s):  
Kiruthika Parangusan ◽  
Venkat Subramanium ◽  
Lakshmanaperumal Sundarabharathi ◽  
Karthik Kannan ◽  
Devi Radhika

Abstract Yttrium oxide nanoparticles with multiform morphologies have been synthesized by the co-precipitation method. The structure, morphology, functional groups, optical and photoluminescence properties were examined through X-ray diffraction (XRD), Scanning electron microscope (SEM), Fourier transform infrared spectrometer (FTIR), UV-Visible (UV-Vis), Photoluminescence spectra (PL). The XRD patterns obtained for the samples synthesized at various pH values confirmed the cubic structure of Y2O3. The patterns obtained on the samples at pH values of 8 and 9 appeared as have sharp peaks suggested, that the samples were well crystallized. From UV-vis spectra, it revealed that the bandgap energy exhibits a blue shift in the absorption edge for the samples with the increase of pH due to their changing morphologies and surface structures. In the PL spectra, the obtained Y2O3 samples demonstrate an intense and bright UV and blue emission under the excitation wavelength range of 250 nm. The photocatalytic degradation of the Y2O3 nanostructure was studied against the Methylene blue (MB) dye under sunlight irradiation. The results showed good recital under solar light irradiation. Further, the antimicrobial activities of Y2O3 nanostructure against foodborne pathogens (Staphylococcus aureus and Salmonella typhi) were examined by using the disc diffusion method. Moreover, the Y2O3 nanostructure was found to be biocompatible.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xuan Nui Pham ◽  
Hoa Thi Nguyen ◽  
Ngan Thi Pham

In recent years, the green synthesis of nanoparticles via biological processes has attracted considerable attention. Herein, we introduce a facile and green approach for the synthesis of poriferous silver nanoparticles (Ag-NPs) decorated hydroxylapatite (HAp@Ag) nanoparticles with excellent antibacterial properties. All the nanocomposites were fully characterized in the solid state via various techniques such as X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectrometer (EDX), in which the synthesized Ag-NPs (24 nm in diameter) and their homogeneous incorporation on HAp have been studied by ultraviolet-visible (UV-vis) technique, transmission electron microscopy (TEM), and dynamic light scattering (DLS) analysis. The obtained results indicate that the structure and morphology of HAp have no significant changes after the incorporation of Ag-NPs on its surface. Moreover, an impressive antibacterial activity of HAp@Ag nanocomposite against Gram-positive bacterium Staphylococcus aureus and Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa has been recorded by using the agar well diffusion method. As a result, the HAp@Ag nanocomposite promises to be a great biomedical material with high antibacterial properties.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1713
Author(s):  
Yanna Gurianov ◽  
Faina Nakonechny ◽  
Yael Albo ◽  
Marina Nisnevitch

Consumption of contaminated water may lead to dangerous and even fatal water-borne diseases. Disinfection of drinking water is the most effective solution for this problem. The most common water treatment methods are based on the use of toxic disinfectants. Composites of polymers with nanosized metals and their oxides may become a good alternative to the existing methods. Expanding the scope of our previous publication, copper, cuprous, and copper oxide nanoparticles were immobilized onto linear low-density polyethylene by a simple thermal adhesion method. The antibacterial efficiency of the immobilized nanoparticles was tested against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus in batch experiments and for the first time the efficiency of these composites is reported for continuous flow regime. Immobilized copper and cuprous oxide nanoparticles demonstrated a high ability to eradicate bacteria after 30 min. These composites showed no or very limited leaching of copper ions into the aqueous phase both in the presence and in the absence of a bacterial suspension. Immobilized copper and cuprous oxide nanoparticles can be used for batch or continuous disinfection of water.


Sign in / Sign up

Export Citation Format

Share Document