The Promise of Mesenchymal stem cells therapy for acute Respiratory Distress Syndrome Caused by COVID-19

Author(s):  
Jundong Gu ◽  
Qinjun Zhao ◽  
Zhibo Han ◽  
Zhongchao Han

: The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) since Dec 2019, known as COVID-19 or 19-nCoV, has led to a major concern of the potential for not only an epidemic but a pandemic in China and now it seems to be a public health problem all over the world. The general mortality rate of the COVID-19 was about 3%. However, the mortality risk seems to be a significant increase in elderly and cases with chronic disease, who are more likely to develop into acute respiratory distress syndrome (ARDS). There still lacks effective methods for ARDS of COVID-19 patients and the prognosis was poor. Mesenchyma stem cells (MSCs) based treatment has the advantage of targeting numerous pathophysiological components of ARDS by secreting a series of cell factors, exerting anti-inflammatory, antioxidative, immunomodulatory, antiapoptotic, and proangiogenic effects, resulting in significant structural and functional recovery following ARDS in various preclinical models. And recently pilot clinical studies indicated MSCs based therapy was promise in treatment of ARDS caused by SARS-CoV-2. However, little is known about MSCs therapy for ARDS caused by COVID-19.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jibin Han ◽  
Yanmin Li ◽  
Yuanyuan Li

Acute respiratory distress syndrome (ARDS) is a multifaced disease characterized by the acute onset of hypoxemia, worsened pulmonary compliance, and noncardiogenic pulmonary edema. Despite over five decades of research, specific treatments for established ARDS are still lacking. MSC-based therapies have the advantage of targeting nearly all pathophysiological components of ARDS by means of a variety of secreted trophic factors, exerting anti-inflammatory, antioxidative, immunomodulatory, antiapoptotic, and proangiogenic effects, resulting in significant structural and functional recovery following ARDS in various preclinical models. However, the therapeutic efficacy of transplanted MSCs is limited by their poor engraftment and low survival rate in the injured tissues, major barriers to clinical translation. Accordingly, several strategies have been explored to improve MSC retention in the lung and enhance the innate properties of MSCs in preclinical models of ARDS. To provide a comprehensive and updated view, we summarize a large body of experimental evidence for a variety of strategies directed towards strengthening the therapeutic potential of MSCs in ARDS.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2015 ◽  
Author(s):  
Isabel Tovar ◽  
Rosa Guerrero ◽  
Jesús J. López-Peñalver ◽  
José Expósito ◽  
José Mariano Ruiz de Almodóvar

We have previously shown that the combination of radiotherapy with human umbilical-cord-derived mesenchymal stromal/stem cells (MSCs) cell therapy significantly reduces the size of the xenotumors in mice, both in the directly irradiated tumor and in the distant nonirradiated tumor or its metastasis. We have also shown that exosomes secreted from MSCs preirradiated with 2 Gy are quantitatively, functionally and qualitatively different from the exosomes secreted from nonirradiated mesenchymal cells, and also that proteins, exosomes and microvesicles secreted by MSCs suffer a significant change when the cells are activated or nonactivated, with the amount of protein present in the exosomes of the preirradiated cells being 1.5 times greater compared to those from nonirradiated cells. This finding correlates with a dramatic increase in the antitumor activity of the radiotherapy when is combined with MSCs or with preirradiated mesenchymal stromal/stem cells (MSCs*). After the proteomic analysis of the load of the exosomes released from both irradiated and nonirradiated cells, we conclude that annexin A1 is the most important and significant difference between the exosomes released by the cells in either status. Knowing the role of annexin A1 in the control of hypoxia and inflammation that is characteristic of acute respiratory-distress syndrome (ARDS), we designed a hypothetical therapeutic strategy, based on the transplantation of mesenchymal stromal/stem cells stimulated with radiation, to alleviate the symptoms of patients who, due to pneumonia caused by SARS-CoV-2, require to be admitted to an intensive care unit for patients with life-threatening conditions. With this hypothesis, we seek to improve the patients’ respiratory capacity and increase the expectations of their cure.


2019 ◽  
Vol 40 (01) ◽  
pp. 040-056 ◽  
Author(s):  
Michele Umbrello ◽  
Jacopo Fumagalli ◽  
Antonio Pesenti ◽  
Davide Chiumello

AbstractA rising prevalence of obesity is reported over time and throughout the world. At the same time, the acute respiratory distress syndrome (ARDS) remains an important public health problem, accounting for approximately 10% of intensive care unit admissions and leading to significant hospital mortality. Even in the absence of acute illnesses, obesity affects respiratory mechanics and gas exchange in the setting of a restrictive disease. In the presence of ARDS, obesity adds various challenges to a safe and effective management of respiratory support. Difficult airway management, altered lung and chest wall physiology, and positional gas trapping are routinely encountered. The management of such difficult cases is generally empiric, as it is based on small-sized, physiologic studies or on suggestions from the general anesthesia literature. The present review focuses on those cases in which ARDS is coincident with obesity, with the aim of presenting treatment options based on the current evidence. The first part summarizes the epidemiology of obesity and ARDS. Then the diagnostic challenges due to obesity-related artifacts of the different imaging techniques will be presented. A subsequent, detailed description of the altered respiratory anatomy and physiology of obesity will provide help in selecting an optimal, individually tailored strategy of support. Furthermore, we will discuss how esophageal manometry should be used to adjust the settings of positive end-expiratory pressure and tidal volume; the challenges of prone positioning and extracorporeal support; and the optimal strategies for weaning from mechanical ventilation, including when and how to perform a tracheostomy.


Sign in / Sign up

Export Citation Format

Share Document