Metallodrugs as Anticancer Chemotherapeutics and Diagnostic Agents: A Critical Patent Review (2010-2020)

Author(s):  
Eirini Fotopoulou ◽  
Ioannis Titilas ◽  
Luca Ronconi

Background: The development of metallodrugs with potential applications in cancer treatment and diagnosis has been a hot topic since the approval and subsequent marketing of the anticancer drug cisplatin in 1978. Since then, thousands of metal-based derivatives have been reported and evaluated for their chemotherapeutic or tumor imaging properties, but only a very limited number gained clinical status. Nonetheless, research in the field has been increasing exponentially over the years, especially in a view to exploiting novel drug designing approaches and strategies aimed at improving pharmacological outcomes and, at the same time, reducing side-effects. Objective: This review article reports on the patents filed during the last decade and strictly focusing on the development of metal-based anticancer and diagnostic agents. The goal is to identify the latest trends and designing strategies in the field, which would represent a valuable starting point to researchers interested in the development of metallodrugs. Methods: The most relevant patents filed in the 2010-2020 timeframe have been retrieved from various databases using dedicated search engines (such as SciFinder, Google Patents, PatentPak, Espacenet, Global Dossier, PatentScope), sorted by type of metallodrug and screened to include those reporting a substantial amount of biological data. Results : The majority of patents here reviewed are concerned with metallodrugs (mostly platinum-based) showing interesting pharmacological properties but no specific tumor-targeting features. Nonetheless, some promising trends in the development of novel drug delivery strategies and/or metallodrugs with potential applications in targeted chemotherapy are envisaged. Conclusion: In this review, the latest trends in the development of metallodrugs from recent patents are summarized and critically discussed. Such trends would be of interest not only to the scientific community but also to lay audiences aiming to broaden their knowledge of the field and industrial stakeholders potentially interested in the exploitation and commercialization of this class of pharmaceuticals.

2019 ◽  
Vol 24 (32) ◽  
pp. 3739-3757 ◽  
Author(s):  
Chandrabose Selvaraj ◽  
Sanjeev K. Singh

Nucleic acid is the key unit and a predominant genetic material for interpreting the fundamental basis of genetic information in an organism and now it is used for the evolution of a novel group of therapeutics. To identify the potential impact on the biological science, it receives high recognition in therapeutic applications. Due to its selective recognition of molecular targets and pathways, DNA significantly imparts tremendous specificity of action. Examining the properties of DNA holds numerous advantages in assembly, interconnects, computational elements, along with potential applications of DNA self-assembly and scaffolding include nanoelectronics, biosensors, and programmable/autonomous molecular machines. The interaction of low molecular weight, small molecules with DNA is a significant feature in pharmacology. Based on the mode of binding mechanisms, small molecules are categorized as intercalators and groove binders having a significant role in target-based drug development. The understanding mechanism of drug-DNA interaction plays an important role in the development of novel drug molecules with more effective and lesser side effects. This article attempts to outline those interactions of drug-DNA with both experimental and computational advances, including ultraviolet (UV) -visible spectroscopy, fluorescent spectroscopy, circular dichroism, nuclear magnetic resonance (NMR), molecular docking and dynamics, and quantum mechanical applications.


2021 ◽  
Vol 21 ◽  
Author(s):  
Madhukar Garg ◽  
Anju Goyal ◽  
Sapna Kumari

: Cubosomes are highly stable nanostructured liquid crystalline dosage delivery form derived from amphiphilic lipids and polymer-based stabilizers converting it in a form of effective biocompatible carrier for the drug delivery. The delivery form comprised of bicontinuous lipid bilayers arranged in three dimensional honeycombs like structure provided with two internal aqueous channels for incorporation of number of biologically active ingredients. In contrast liposomes they provide large surface area for incorporation of different types of ingredients. Due to the distinct advantages of biocompatibility and thermodynamic stability, cubosomes have remained the first preference as method of choice in the sustained release, controlled release and targeted release dosage forms as new drug delivery system for the better release of the drugs. As lot of advancement in the new form of dosage form has bring the novel avenues in drug delivery mechanisms so it was matter of worth to compile the latest updates on the various aspects of mentioned therapeutic delivery system including its structure, routes of applications along with the potential applications to encapsulate variety drugs to serve health related benefits.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yi Chen ◽  
Fons. J. Verbeek ◽  
Katherine Wolstencroft

Abstract Background The hallmarks of cancer provide a highly cited and well-used conceptual framework for describing the processes involved in cancer cell development and tumourigenesis. However, methods for translating these high-level concepts into data-level associations between hallmarks and genes (for high throughput analysis), vary widely between studies. The examination of different strategies to associate and map cancer hallmarks reveals significant differences, but also consensus. Results Here we present the results of a comparative analysis of cancer hallmark mapping strategies, based on Gene Ontology and biological pathway annotation, from different studies. By analysing the semantic similarity between annotations, and the resulting gene set overlap, we identify emerging consensus knowledge. In addition, we analyse the differences between hallmark and gene set associations using Weighted Gene Co-expression Network Analysis and enrichment analysis. Conclusions Reaching a community-wide consensus on how to identify cancer hallmark activity from research data would enable more systematic data integration and comparison between studies. These results highlight the current state of the consensus and offer a starting point for further convergence. In addition, we show how a lack of consensus can lead to large differences in the biological interpretation of downstream analyses and discuss the challenges of annotating changing and accumulating biological data, using intermediate knowledge resources that are also changing over time.


2015 ◽  
Vol 4 (3) ◽  
pp. 187-205 ◽  
Author(s):  
Gillian A Horne ◽  
Ross Kinstrie ◽  
Mhairi Copland

2021 ◽  
Vol 5 (1) ◽  
pp. 11
Author(s):  
Ljubomir Nikolov

A theoretical study is performed about the hydrodynamic interaction of fine species entrapped in the boundary layer (BL) at solid wall (plate). The key starting point is the analysis of the disturbance introduced by solid spheres in the background fluid flow. For a neutrally buoyant entity, the type of interaction is determined by the size of the spheres as compared to the thickness of the BL region. The result is granulometric separation of the solids inside the BL domain at the wall. The most important result in view of potential applications concerns the so-called small particles Rp < L/ReL5/4 (ReL is the Reynolds number of the background flow and Rp is the radius of the entrapped sphere). In the case of non-neutrally buoyant particles, gravity interferes with the separation effect. Important factor in this case is the relative density of the solid species as compared to this of the fluid. In view of further practical uses, particles within the range of Δρ/ρ < Fr2/ReL1/2 (Fr is Froude number and Δρ/ρ is the relative density of the entrapped solids) are systematically studied. The trajectories inside the BL region of the captured species are calculated. The obtained data show that there are preferred regions along the wall where the fine solids are detained. The results are important for the assessment of the general efficiency of entrapment and segregation of fine species in the vicinity of solid walls and have high potential for further design of industrial separation processes.


2007 ◽  
Vol 18 (3) ◽  
pp. 677-684 ◽  
Author(s):  
Ying Tang ◽  
Shaoxian Yang ◽  
Jean Gariépy ◽  
Deborah A. Scollard ◽  
Raymond M. Reilly

2018 ◽  
Vol 62 (5) ◽  
Author(s):  
Rashmi Gupta ◽  
Carolina Rodrigues Felix ◽  
Matthew P. Akerman ◽  
Kate J. Akerman ◽  
Cathryn A. Slabber ◽  
...  

ABSTRACTMycobacterium tuberculosisand the fast-growing speciesMycobacterium abscessusare two important human pathogens causing persistent pulmonary infections that are difficult to cure and require long treatment times. The emergence of drug-resistantM. tuberculosisstrains and the high level of intrinsic resistance ofM. abscessuscall for novel drug scaffolds that effectively target both pathogens. In this study, we evaluated the activity of bis(pyrrolide-imine) gold(III) macrocycles and chelates, originally designed as DNA intercalators capable of targeting human topoisomerase types I and II (Topo1 and Topo2), againstM. abscessusandM. tuberculosis. We identified a total of 5 noncytotoxic compounds active against both mycobacterial pathogens under replicatingin vitroconditions. We chose one of these hits, compound 14, for detailed analysis due to its potent bactericidal mode of inhibition and scalable synthesis. The clinical relevance of this compound was demonstrated by its ability to inhibit a panel of diverseM. tuberculosisandM. abscessusclinical isolates. Prompted by previous data suggesting that compound 14 may target topoisomerase/gyrase enzymes, we demonstrated that it lacked cross-resistance with fluoroquinolones, which target theM. tuberculosisgyrase.In vitroenzyme assays confirmed the potent activity of compound 14 against bacterial topoisomerase 1A (Topo1) enzymes but not gyrase. Novel scaffolds like compound 14 with potent, selective bactericidal activity againstM. tuberculosisandM. abscessusthat act on validated but underexploited targets like Topo1 represent a promising starting point for the development of novel therapeutics for infections by pathogenic mycobacteria.


2021 ◽  
Vol 12 ◽  
Author(s):  
Abdrabo Soliman ◽  
Abdel-Salam G. Abdel-Salam ◽  
Mervat Ahmed

Background: The Bene-Anthony Family Relations Test (BAFRT) is one of the most widely used measures of family dynamics seen from a child’s perspective. However, the most common issue surrounding this test is the lack of accurate normative scores for use with non-white ethnic groups. The purpose of this study was to examine the BAFRT’s reliability and validity for use with Arab children, as well as to provide normative data for this group. Methods: The BAFRT was translated into Arabic and back-translated to ensure accuracy. The test was administered to a cohort of 394 Arab children, consisting of both cognitively normal children (n = 269) and children diagnosed with a psychological disorder (n = 125), all aged 5–8 years old. Test-retest reliability was assessed using a sub-set of children and validity was tested against clinical status as well as CBCL and SDQ measures. Normative measures were calculated after examining the impact of influencing variables such as age and gender. Results: Statistical analyses showed that in our cohort of Arab children the BAFRT has good test-retest reliability, correlates well with measures of emotional and behavioral adjustment, and discriminates accurately between clinical and non-clinical children. Age, gender, and clinical status all significantly impacted upon BAFRT scores and therefore normative values are presented from our cohort when considering these variables. Conclusion: The normative scores we present will provide researchers and clinicians an appropriate reference point for the comparison of scores from Arab children and a starting point for future research into this area.


2021 ◽  
Vol 7 (12) ◽  
pp. 1028
Author(s):  
Silvia Donzella ◽  
Claudia Capusoni ◽  
Luisa Pellegrino ◽  
Concetta Compagno

The possibility to perform bioprocesses with reduced ecological footprint to produce natural compounds and catalyzers of industrial interest is pushing the research for salt tolerant microorganisms able to grow on seawater-based media and able to use a wide range of nutrients coming from waste. In this study we focused our attention on a Debaryomyces hansenii marine strain (Mo40). We optimized cultivation in a bioreactor at low pH on seawater-based media containing a mixture of sugars (glucose and xylose) and urea. Under these conditions the strain exhibited high growth rate and biomass yield. In addition, we characterized potential applications of this yeast biomass in food/feed industry. We show that Mo40 can produce a biomass containing 45% proteins and 20% lipids. This strain is also able to degrade phytic acid by a cell-bound phytase activity. These features represent an appealing starting point for obtaining D. hansenii biomass in a cheap and environmentally friendly way, and for potential use as an additive or to replace unsustainable ingredients in the feed or food industries, as this species is included in the QPS EFSA list (Quality Presumption as Safe—European Food Safety Authority).


Aerospace ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 324
Author(s):  
Yinbo Mao ◽  
Ziyu Chen ◽  
Hui Li ◽  
Xinrong Su ◽  
Xin Yuan

This paper presents a novel theory regarding the blade loading and the passage flow field within general turbomachineries. The basic philosophy is to establish an analytical relation between the loading, the flow angle, and the blade geometry based on the conservation of energy. Detailed validations and analyses will be carried out to provide a general scope regarding the theory itself as well as its advantages and limitations in common applications. The paper includes the theoretical derivation of the target relation. The starting point is the standard RANS equations. From that, with the aid of the passage-average operator, the relation between the loading and the passage flow field is derived under the energy balance. Theoretical analyses regarding the validity of the relation are performed based on the simulation results and test data on different cascades. Discussions are conducted regarding the assumption and potential applications of the theory. Conclusions are drawn on the applicability of the theory to introduce its potential applications in general turbomachineries.


Sign in / Sign up

Export Citation Format

Share Document